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Abstract 

Computing is one of mankind’s most important technological advancements. The evolution of computing in a 
way has driven human progress over the years. Information processing has always been the primary 
objective for this evolution. The pervasiveness of information further drives the need for this advancement. 
 
A variety of requirements use cases exist for information processing, from large enterprises to personal 
computing and from centralized to distributed edge setups. Several architecture models – from client-server 
to cloud computing – have evolved over the years for serving various purposes. While the architecture 
model’s aim to focus on where or how information processing happens, it is equally important to understand 
what type of information processing is required for a specific use case.  

 
As the nature of applications and their requirements change, one needs flexibility to switch between Classical 
and Quantum Computing. This article emphasizes the process of toggling between classical data and 
quantum data to solve complex and next generation problems such as Quantum Cryptography. 
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Introduction 

Computing has evolved exponentially since the mid-20th century led by computers that became faster, more 
powerful, and smaller. 
 
This evolution is reaching its physical barrier. As the processor and other associated computer chips are 
approach the size of an atom restricts further advancements in processor development. A computer 
processor contains modules of logic gates which in turn contains transistors. 
 
A transistor functions as a switch which can either open or close for information flow. Information consists of 
0’s and 1’s (binary) bits and the action of the transistor results in the flow of these bits. Logic gates are 

formed with a combination of multiple transistors organized in a logical way to result in a specific outcome 
(like an adder). An arrangement of various logic gates can be combined to form modules in a computer which 
can perform complex math. 
 
As transistor size shrinks to the scale of a few atoms, physical limitations governed by quantum physics 
result in a process called Quantum Tunneling where the electrons/holes in a transistor transfer to the other 
side of the junction.  
 
Classical physics stops making sense when the size of the particles and its associated properties are at the 

scale of planks constant (10−34). This makes things tricky for information processing and thus becomes a 
barrier for technology progress. To address this problem, we are trying to use these limitations caused by 
quantum physics to their advantage by building quantum computers. 
 
A quantum computer represents an evolution of computing which can harness the nature to do computation. 

It’s not called an advancement due to its smaller size; rather, it is but due to its capability to solve interesting 
problems. 
 
Using a quantum computer may not be efficient for use cases such as addition of numbers and weather 
forecasting. But for other, more complex use cases, a quantum computer could do things in seconds that, as 
far as we know, would take any existing computer longer than the age of the universe. 
 
Even for the problems solved by using a quantum computer, we would still require classical computer to 
process the outputs as that will be the optimal way. Quantum Computing in its true sense does not replace 
classical computing; it complements it. 
 
Before we explore the use cases that could be efficiently solved using quantum computers, let’s consider 

some of the foundational concepts of quantum computing. 
 

Qubits 

In classical computers, information processing happens via binary classical bits which can be represented 
using various descriptions: 

• Mathematical description - 0’s and 1’s  

• Physical description – voltage and/or magnetic domain 

In quantum computers, information processing happens using qubits. A qubit is the simplest quantum 
system. Qubits can be realized in different ways such as using atoms, photons, electrons, etc. and this 
formulates the physical description.  
 
A Qubit has 2 special states |0> and |1> where “|>” is called the ket notation. 

 

Quantum State 

A quantum state of a qubit is a vector in 2-D complex vector space. A general quantum state can be formed 
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from a linear combination of |0> and |1>. 
 
Superposition – Superposition mathematically can be thought of as another word for linear combination. 
 

 
Figure 1: 2-D Complex Vector Space 

In Figure 1, quantum state α |0> + β |1> is a linear combination, in other words a state in superposition and 
the amplitudes α and β are the coefficients, in other words the probabilities of states |0> and |1>, 
respectively. A quantum state is a vector with certain constraints that the vector should be of unit length. 
 

𝛼2 +  𝛽2 = 1 (𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 𝑎𝑠 𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑒𝑞𝑢𝑎𝑙  𝑡𝑜 1) 
 
So, a quantum state of a qubit is a vector of unit length in a 2-D complex vector space as shown in Figure 1. 

The quantum state can be represented using | 𝜓> = α |0> + β |1> which can also be represented in matrix 

form (𝛼
𝛽

) Where, 

|0> = [
1
0

] 

|1> = [
0
1

] 

 
These quantum states |0> and |1> are called computational basis states. 
 

Quantum Logic Gates 

Quantum logic gate is a way of manipulating quantum information or manipulating the quantum state of a 
qubit or a set of qubits. They are the basic building blocks of quantum computation. 
 

Quantum Circuit 

A quantum circuit is a representation of the quantum gates and their combinations in a sequential 
arrangement like classical circuits for modelling quantum computation. 
 
Quantum Wire is a fundamental quantum circuit which is analogous to the classical circuit wires which seems 
obvious for information flow. However, unlike classical circuit wires, quantum circuit wire is very challenging 
to implement practically as the quantum state of a qubit that traverses through this wire is very fragile and is 
easily disturbed. Figure 2 gives a representational view of quantum wire which allows transmission of 

quantum state of a qubit. 
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Figure 2: Quantum Wire 

Quantum circuits for quantum gates will be represented in upcoming sections of this article where quantum 
wires are an inherent part of those circuits. 

 
Quantum NOT Gate 

Quantum NOT gate is a single qubit gate. A generalization of the classical NOT gate, The quantum NOT gate 
is a single qubit gate which has one input and one output. The quantum circuit representation of the quantum 
NOT gate is shown in Figure 3.  
 

 
Figure 3: Quantum NOT gate 

The mathematical representation of quantum NOT gate is in the matrix form shown below. 

𝑋 =  [
0 1
1 0

] 

 
When a quantum NOT gate is applied to a quantum state |0>, the output would be switched to quantum state 
|1> like classical NOT gate. 

X |0> = [
0 1
1 0

] [
1
0

] = [
0
1

] = |1> 

 
Similarly, when a quantum NOT gate is applied to a quantum state |1>, the output would be switched to 
quantum state |0> like classical NOT gate. 

X |1> = [
0 1
1 0

] [
0
1

]= [
1
0

]= |0> 

 
It’s interesting to note that when a quantum NOT gate is applied on a superposition state, the gate is applied 
linearly on individual qubits and switches the state as expected like a classical NOT gate operation. 
 

X {α |0> + β |1>} = α |1> + β |0> 
 
It is important to verify that the quantum state traversing via NOT gate is remaining at unit length; in other 
words, the quantum NOT gate is a Unitary Matrix. This can be verified by applying quantum NOT gate twice 

sequentially on any given quantum state | 𝜓 >. 

 

| 𝜓 > ---------> X | 𝜓 > --------> XX | 𝜓 > ---------> | 𝜓 > 
 
In matrix form, when quantum NOT gate is applied twice the resultant matrix is an identity matrix indicating no 
change in the length or magnitude of the quantum state. 
 

XX = [
0 1
1 0

] [
0 1
1 0

] = [
1 0
0 1

] = I (Identity Matrix) 
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The same applies for any state in superposition that the resultant qubit is always of unit length and in quantum 
circuit representation. Figure 4 shows that applying quantum NOT gate twice is equivalent to not applying any 
gate on that qubit. 
 

 
Figure 4: Quantum NOT applied twice on a qubit 

Quantum Hadamard Gate 

The quantum Hadamard gate is another single qubit gate which takes single qubit as input and results in a 
superposition quantum state. The quantum Hadamard gate is a single qubit gate which has one input and 
one output. The quantum circuit representation of the quantum Hadamard gate is shown in Figure 5. 
 

 
Figure 5: Quantum Hadamard Gate 

The mathematical representation of quantum Hadamard gate is in the matrix form shown below. 

𝐻 =  
1

√2
[1 1
1 −1

] 

 
When Hadamard gate is applied on the quantum state 0, the quantum state is switched to superposition 
quantum state as shown below. 

𝐻 |0 > = 𝐻 [
1
0

] =  
1

√2
[
1 1
1 −1

] [
1
0

] =  
1

√2
[
1
1

] = 
|0 > + |1 >

√2
 

 
 
When Hadamard gate is applied on the quantum state 0, the quantum state is switched to superposition 
quantum state as shown below: 
 

𝐻 |1 > = 𝐻 [
0
1

] =  
1

√2
[
1 1
1 −1

] [
0
1

] = 
1

√2
[

1
−1

] =  
|0 > − |1 >

√2
 

When Hadamard gate is applied to a superposition state, the output below will be obtained. 

H {α |0> + β |1>} ---> α (
|0>+ |1>

√2
) + β (

|0>− |1>

√2
) = 

𝛼+ 𝛽

√2
 |0> + 

𝛼− 𝛽

√2
 |1> 

 
It is important to verify that the quantum state traversing via Hadamard gate is remaining at unit length; in other 
words the quantum Hadamard gate is a Unitary Matrix. This can be verified by applying quantum Hadamard 

gate twice sequentially on any given quantum state | 𝜓 >. 

 
| 𝜓 > ---------> H | 𝜓 > --------> HH | 𝜓 > -------> | 𝜓 > 
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In matrix form, when quantum Hadamard gate is applied twice the resultant matrix is an identity matrix 
indicating no change in the length or magnitude of the quantum state. 
 

HH = 
1

√2
[
1 1
1 −1

]
1

√2
[
1 1
1 −1

] = 
1

2
[
2 0
0 2

] = [
1 0
0 1

] = I (Identity Matrix) 

 
Quantum computation of applying Hadamard gate twice on a qubit at state 0 on quantum circuit level will be: 
 

H |0> = 
|0>+ |1>

√2
  

 

H {
|0>+ |1>

√2
} = 

1

√2
 {

|0>+ |1>

√2
+ 

|0>− |1>

√2
}  = |0> 

 
Quantum computation of applying Hadamard gate twice on a qubit at state 0 on quantum circuit level will be: 

 

H |1> = 
|0>+ |1>

√2
  

 

H {
|0>− |1>

√2
} = 

1

√2
 {

|0>+ |1>

√2
− 

|0>− |1>

√2
}  = |1> 

 
The same applies for any state in superposition that the resultant qubit is always of unit length and in quantum 

circuit representation. Figure 6 shows that applying quantum Hadamard gate twice is equivalent to not applying 
any gate on that qubit. 
 

 
Figure 6: Quantum Hadamard gate applied twice on a qubit 

Quantum gates – like Hadamard gates – expand the range of states it is possible for a computer to be in. 
Allowing such an expansion of the range of states creates the possibility to take shortcuts which may help 
perform computations faster. 

 
More Single Qubit Quantum Gates 

Another single qubit gate is shown below which has real parameters θ and φ. We can expect phase change 
in computational basis states |0> and |1>. 

[𝑒𝑖𝜃 0
0 𝑒𝑖𝜙

] 

 
This matrix is also unitary which can be shown by self-multiplying the matrix by itself to result in identity 
matrix. 
 
Applying this gate on quantum state |0> gives: 
 

[𝑒𝑖𝜃 0
0 𝑒𝑖𝜙

] [
1

0
] =  𝑒𝑖𝜃

 |0 >  
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Applying this gate on quantum state |1> gives: 
 

[𝑒𝑖𝜃 0
0 𝑒𝑖𝜙

] [
0

1
] =  𝑒𝑖𝜃  |1 >  

 

For a general quantum state (α |0> + β |1>), the output would be (α 𝑒𝑖𝜃|0> + β 𝑒𝑖𝜙|1>) 

 
These phase factors (θ and φ) don’t make any difference to the absolute value of α and β. So, the state 

 (α |0> + β |1>) is indistinguishable from the state (α 𝑒𝑖𝜃|0> + β 𝑒𝑖𝜙|1>). 
 
Since the input and output states are not distinguishable when seen from the absolute value point of view, 
application of this gate on a quantum state can been seen different when viewed from quantum circuit way. 
As an example, when the real parameters are set to θ = 0, φ = π and this gate is applied with an input 
|0>+ |1>

√2
 then, 

[𝑒𝑖𝜃 0
0 𝑒𝑖𝜙

](
|0>+ |1>

√2
) = 

|0> − |1>

√2
 is the output 

 

So, the states 
|0>+ |1>

√2
 and 

|0> − |1>

√2
 though having same absolute value, differ with each other when 

applied with Hadamard gate giving different outputs |0> and |1> respectively. 
 

Hence, they are different and gates of the form [𝑒𝑖𝜃 0
0 𝑒𝑖𝜙

] can have a practical impact on the outcomes of 

our computations. 
 
There are several other single qubit gates such as: 
 

• Rotation gate: [
𝐶𝑜𝑠𝜃 −𝑆𝑖𝑛𝜃
𝑆𝑖𝑛𝜃 𝐶𝑜𝑠𝜃

] 

 

• Pauli X gate: [
0 1
1 0

] 

 

• Pauli Y gate: [
0 −𝑖
i 0

] 

 

• Pauli Z gate: [
1 0
0 −1

] 

 

 

All these quantum gates are unitary which means if the matrix representation of each of these gates is 
multiplied by itself, it results in an Identity matrix. 
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Controlled-NOT Gate (Multi Qubit Quantum Gate) 

Controlled-NOT gate is one of the 2 qubit quantum gates out there which has 2 qubits as inputs. One of the 
qubits is called the control qubit which decides how the outcome would vary while the other is called the 
target qubit as shown in Figure 7. 
 

 
Figure 7: Controlled-Not gate 

We now have 4 computational basis states, and they can form to be in superposition as follows: 
 

𝛼 |00 > + 𝛽 |01 >  + 𝛾 |10 >  + 𝛿 |11 > 
 
For absolute value normalization of quantum state, 𝛼2 +  𝛽2 +  𝛾2 +  𝛿2 = 1 should be met. 
 
In a quantum controlled-Not gate, the target qubit remains as is until the control qubit is in the quantum state 
of |0>. The moment the control bit is in the quantum state of |1>, the target qubit is flipped. If we represent 
this logic as a truth table: 
 

|00>    ------>    |00> 
|01>    ------>    |01> 
|10>    ------>    |11> 
|11>    ------>    |10> 

 
This above logic can be summarized as: 

|xy>   ------>  |x yꚚx> 
 
The matrix representation of the controlled-Not gate is: 
 

[

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

] 

 
The 3-qubit controlled NOT gate shown in Figure 8 can be summarized as: 
 

|xyz>   ------> |x y zꚚy> 

 

 
Figure 8: 3-qubit cNOT gate 
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Quantum Entanglement 

Interesting things happen when quantum logic gates are arranged in certain ways. Consider a circuit as 
shown in Figure 9 where the input |00> is applied to Hadamard gate which then is applied to a cNOT gate. 

 
Figure 9: Hadamard gate applied to cNOT gate 

When the Hadamard gate is applied to the input quantum state |00>:  
 

|00> transforms into  
|00>+ |10>

√2
 

 

Applying cNOT to 
|00>+ |10>

√2
 results in 

|00>+ |11>

√2
 

This output 
|00>+ |11>

√2
 is a non-classical state (also called an entangled state or Bell State). There is no 

simple interpretation of this state as a classical state of two qubits.  

 
Thus, a single qubit gate and cNOT gate can result in an interesting output which has special use in 
information processing. 
 

Measuring a Qubit 

Qubits can be in any quantum state, be it quantum computational basis states |0> or |1> or in an intermediate 

superposition quantum state in a 2-D complex vector space. To know which quantum state (𝜓) a given qubit 

(α |0> + β |1>) is in, we need to measure the qubit to observe its quantum state.  
 

In quantum mechanics, the term quantum state (𝜓) used thus far in this article based on mathematical 

description is considered as wave function 𝜓(x) which is related to probability distribution of observable 
quantities (x) like position/energy/momentum of a particle. 
 

𝜓(x) is a complex function and has value as a complex number which can never really be observable. As an 

example, a position of value (5+6i) meters is something non-existent in physical world.  
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Mathematically to determine the probability of finding the particle between positions ‘a’ and ‘b’ is given by 
integral of probability distribution of this state of the system. 
 

𝑃(𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎 & 𝑏) = ∫ |𝜓(𝑥)|2 𝑑𝑥
𝑎

𝑏

 

 
The wave function collapses after the measurement to the position of the particle as shown in Figure 10. 
Similarly, the quantum state of a qubit in mathematical description is not directly observable and it collapses 
to quantum computational basis states |0> or |1> after measurement. 
 

So, when a qubit (α |0> + β |1>) is given and we perform measurement on it in computational basis, it gives 
us a classical bit 0 or 1. 
 

 
 
 
The measurement in the computational basis for a given qubit disturbs the state of the quantum system. After 
the measurement, qubit is either in the computational basis state 0 or 1 and the coefficients α and β 
disappear. 
 
α and β are complex numbers and are like hidden information; we can’t get full information about them and 

they are gone after the measurement. A qubit can’t store an infinite amount of classical information. 
 
As an example: 

 
 
Measurement follows normalization to maintain the rule that sum of all probabilities is equal to one. The 
circuit notation for measurement is shown in Figure 11. 

 
Figure 11: Circuit Notation for Measurement 

Figure 10: Wave function before and after measurement 
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Classical information is sent via quantum circuits for processing and when the measurement is performed on 
the processed quantum bits, the result is classical bits as shown in Figure 12. 
 

 
Figure 12: Classical to Quantum to Classical Information Flow 

Universality in Computation 

Universality with respect to computation is the ability of the compute system to compute any given function. 

That is, given a function ꓝ, the compute system should be able to compute F(x) for all values of x. 
 

Classical Computation  

Classical computers combine logic gates like AND & NOT gates together to compute any function. Hence, 
the classical NOT & AND gates are called universal gates. There are other logic gates like NAND gate in a 
classical computer which is also called universal gates. Thus, the concept of universality in classical 
computers is achieved using universal gates and/or a combination of those logic gates. 
 

Quantum Computation 

In the case of quantum computation, the analogous universal gates could be cNOT and single qubit gates 

which can be used to build up any unitary operation on ‘n’ qubits.  
 

 
Figure 13: Quantum Universal Computation 

A sample quantum circuit to demonstrate quantum computation is illustrated in Figure 13. The following is the 

high-level computational steps: 
 

• Start in a computational basis state as 4 inputs |0> |0> |0> |0> ~= |0000> 

 

• Apply a sequence of cNOT’s and single Qubit gates 

 

• Measure in the computational basis 
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o Pr(0….0) = |amplitude|2  

 

o This can be considered as formulating computation of any function with inputs (x) 

▪ |x,0> -----------> |x, F(x)> 

For every x->F(x) in classical computing there is an analogous equivalent |x,0> ------->|x,F(x)>. 
 

3.1 Problem Complexity in Classical Computing 

Alan Turing has tabled an idea of a universal computing machine where the operation of the machine can be 
written in terms of a program. The purpose of this universal computing machine is to compute any 
computable sequence. To perform computations, we realized and developed systems that could have a lot of 
space and memory. Having space and memory turned out to be a smaller problem than the time required to 

perform the computation sequence for complex problems as shown in Figure 14. 

 
Figure 14: Computing Problem Types Vs Time 

Dr John Nash during his work in break codes suggested that we should not look at the absolute time required 
for computing a problem (example: time required to perform subtraction of two 3-digit numbers) but instead 
look at how the computation grows relative to input size as shown in Figure 15. (example: How long does it 
take to subtract two 3-digit numbers Vs subtracting 4-digit numbers). 

 
Figure 15: Input size vs Time of a computation problem 
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Later, it was thought that instead of measuring them with respect to time (Seconds) we should instead use 
the number of machine operations. Number of steps in other words can be considered as number of state 
transitions.  
 
The growth of each problem can be drawn as a curve based on number of steps a problem would take on 
any machine as the input size grows. As shown in Figure 16, we can relate Problem 1 to Addition which 
grows more slowly than Problem 2 which can be thought as a Multiplication operation.  

 

 
Figure 16: Input Size Vs Time Steps for computational problems 

3.1.1 Linear Time vs Polynomial Time Problems 

The shape of these growth curves became a meaningful way to classify a given problem. One important 
reason the growth increases more quickly for some problems verses others is due to the presence of loops in 
the algorithm run by the system. So, the number of steps in the loop depend on the size of the input. This is 
where the number of time steps linearly grow with input size and often called as a linear growth problem.  

 
Figure 17: Linear Vs Polynomial Complexity 

More complex problems would have loops inside another loop which are called nested loops. If the loop is 
nested twice, we get a growth curve of n2 and if the loop is nested thrice, the growth curve resulted is n3. 
These types of problems are called polynomial time because the growth of the problem can be described 
using nk where n is the input size and k is the number of nested loops or depth of the computational problem. 
Figure 17 illustrates the growth curves of linear vs polynomial problems. 
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3.1.2 Polynomial Time vs Exponential Time Problems 

It turns out most of the computational problems that need to be solved require polynomial time. Sorting of 
numbers is one such example that requires polynomial time. There is another type of computational problem 
which poses a problem, called exponential computational problems. These type problems grow with input 
size; that is, the number of nested loops require is of the order of input size. As an example, if 3-digit input 
size problems require 3 nested loops then incrementing the input size to 4 requires 4 nested loops. The 

growth curve of these problems grows more sharply than the polynomial type of computational problems. 
Thus, these types of problems can be represented by kn where n is the input size and k are the number of 
nested loops. 
 

 
Figure 18: Nested Loops in Polynomial vs Exponential time problems 

 

The key difference between polynomial time and exponential time computational problems is that in the 
polynomial time problems P(nk), the number of loops (k) in the algorithm doesn’t change when the input size 
(n) grows as shown in Figure 18. Increasing the input size (n) simply adds to the number of steps within each 
loop but in an exponential time problem EXP (kn), the number of nest loops (k) increases as the input size (n) 
grows. 
 
The exponential computational problems quickly become intractable with classical computing due to increase 
in number of operations or number of nested loops as the input size increases. Hence, we can say that 
polynomial time problems are practical and exponential problems are not practical. 
 
3.1.3 Polynomial Time vs Non-Deterministic Polynomial Time Problems 

It is desirable to develop algorithms that could solve exponential time problems in polynomial time. If this is 

accomplished, one can say that the complexity of an exponential time category problem is reduced to a 
polynomial time category problem. Many exponential problems such as finding prime factorization of a 
number are irreducible to polynomial time.  
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Figure 19: Categories of the Problems based on complexity 

The next set of problems are difficult to solve but easy to verify. These sets of problems at first appear very 
difficult to solve but once the answer is known, the solution appears obvious. Many decision-based problems 
fall into this category and these problems are called Non-deterministic Polynomial time (NP) problems which 
are theoretically possible to solve in polynomial time. This is practically possible only if we have a non-
deterministic computing which processes the algorithm of decision making in parallel.  
 
NP is solvable in polynomial time using a Non-Deterministic machine as shown in Figure 19. Since Non-
Deterministic machines are non-existent, NP problems remain as exponential time problems. So, P ≠ NP. 

 
3.1.4 NP vs NP-Complete Problems 

There are certain problems in the NP category which share structural similarity and can be reduced to each 
other. This set of interconnected problems are called NP-Complete problems. If any one of the NP Complete 
problems is solved in polynomial time, all the interconnected problems will get solved making P = NP. 
However, this wasn’t the case so far. 
  

3.2 Problem Complexity in Quantum Computing 

Quantum complexity theory is a subfield of the world of computational complexity theory which deals with the 
categorization of algorithms, sorting them into bins according to how well they run on computers.  
 
The categorization is based on how much harder it is to solve the problem as the problem gets larger. The 
P box shown in Figure 20 in green is easy to solve with a classical computer, but anything outside it means 

we don’t have efficient classical algorithms to solve them and factoring large numbers is one of these.  
 
But the BQP box shown in Figure 20 is efficient for a quantum computer, but not a classical computer. 
These are the problems better solved by quantum computers than classical computers. 
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Figure 20: Quantum Complexity 

There are a number of problems that you can solve on a quantum computer that are considered   
intractable on classical computers.  
 
There are many quantum algorithms, such as Shor’s algorithm. If you have two large numbers and multiply 
them together there is a very fast, efficient, classical algorithm for finding the answer.  
 
However, It is a lot more difficult if you start with the answer and then ask, what are the original numbers 
that multiply together to make this number. This is known as factorization, and these numbers are called 
factors. The reason finding them is so hard is because the search space of possible factors is so 

large. Unfortunately, there is no efficient classical algorithm for finding the factors of large numbers.  
 
For this reason, we use this mathematical property for internet encryption: secure websites, emails, and bank 
accounts.  
 
If you know these factors you can easily decrypt the information, but if you don’t, you’d need to find them 
first which is intractable on the world’s most powerful computers. 
 

3.3 Quantum Cryptography 

In Cryptography, the process of encryption – scrambling a message using a secret key – is usually fast to 
perform while the process of decryption which is unscrambling the message without knowing the secret key 
is slow or, in other words, an exponential time problem. If we have kept the encryption key secret, we will 
have an encryption system impossible to break. 

 
3.3.1 Transporting 2 classical bits in single qubit 

Quantum information processing allows someone to send two classical bits to another person using just a 
single qubit of communication. This procedure is known as superdense coding. 
 
Consider the quantum circuit shown in Figure 21 to see how two classical bits can be embedded into a single 
qubit. In this procedure, the quantum circuit is virtually divided into 3 segments where each segment has 
visibility to only one person; Eve, Alice, and Bob respectively. 
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Figure 21: Superdense coding 

In this superdense coding protocol, we shall use a special quantum state called Bell state. Bell state is an 
example of a special type of quantum state called entangled quantum state. 
 

The Bell state 
|00>+ |11>

√2
 cannot be mentioned in terms of 1st and 2nd qubits separately.  

 
Any state with the property that they cannot be decomposed into separate qubits is the entangled state. Bell 
state is just one of many such entangled states. These entangled states are different than classical states 
and are essential in the workings of the quantum computers.  
 
Any quantum computation which never generates entangled quantum states can be efficiently simulated on a 
classical computer. The above also means that for a quantum algorithm to be much faster than a 

corresponding classical algorithm, it must necessarily use entangled state. 
  
Eve has two quantum bits which are in |0> state as shown in Figure 21. As mentioned earlier, it is essential 
to prepare Bell state so that we could leverage the power of quantum computing and to do so there could be 
many ways to prepare a Bell state. In this scenario, we shall use Hadamard gate followed by cNOT gate to 
prepare Bell state as shown in Figure 22 which is an initial segment from Figure 21. 
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Figure 22: Bell State preparation 

The 2 qubits in state |0> with Eve are transformed into the quantum state 
|00>+ |10>

√2
 after passing through 

Hadamard gate. Then this intermediate quantum state is passed through cNOT gate to result in Bell state 
|00>+ |11>

√2
.  

 
Once Eve prepares the Bell state, she sends one qubit to Alice and the other to Bob. Alice wants to 
communicate 2 classical bits over to Bob using 1 qubit she received from Eve. Alice wants to embed classical 

bits in a specific way such that only Bob understands them. 
 
If Alice wants to send two classical bits as 00, then she doesn’t want to change the quantum state of that 
single qubit she received from Eve. This communication can be specified by notation 00 : I where 00 are the 
classical bits and I is the Identity (or no change). In this case the quantum state of qubit sent by Alice to Bob 

will be 
|00>+ |11>

√2
. 

 
If Alice wants to send two classical bits as 01, then she will apply a quantum NOT gate to change the 
quantum state of that single qubit she received from Eve. This communication can be specified by notation 
01 : X where 01 are the classical bits and X represents the quantum NOT gate. In this case the quantum 

state of qubit sent by Alice to Bob will be 
|10>+ |01>

√2
. 

 
If Alice wants to send two classical bits as 10, then she will apply a quantum Z gate to change the quantum 
state of that single qubit she received from Eve. This communication can be specified by notation 10 : Z 
where 10 are the classical bits and Z represents the quantum Z gate. In this case the quantum state of qubit 

sent by Alice to Bob will be 
|00>− |11>

√2
. 

 
If Alice wants to send two classical bits as 11, then she will apply a quantum X and Z gates to change the 
quantum state of that single qubit she received from Eve. This communication can be specified by notation 
11 : XZ where 11 are the classical bits and XZ represents the quantum X and Z gates. In this case, the 

quantum state of qubit sent by Alice to Bob will be 
|10>− |01>

√2
. 

 

 



2022 Dell Technologies Proven Professional Knowledge Sharing  24 
 

 
Figure 23: Classical bits embedded into Quantum bits 

Alice has encoded this classical information in that single qubit she received from Eve and is sent over to Bob 
as shown in Figure 23 which is a segment from Figure 21. 

 
Bob receives 2 qubits, 1 from Eve and the other from Alice. Alice’s qubit starts out entangled with Bob’s qubit 
and it is with this entangled state that it’s possible to store the two bits of classical information. If Alice’s qubit 
is not entangled in the first place, then most information we can store on that 1 qubit is just 1 classical bit. 
 
The qubits received by Bob are in one of the 4 quantum states (00+11, 10+01, 00-11 & 10-01). These 4 
quantum states are called Bell states which are further processed by Bob to extract information sent by Alice. 
 
For Bob to distinguish these 4 states, a decoding circuit is required, and this decoding circuit can have the 
quantum logic gates in the reverse order to that of the encoding circuit we used. That is the 2-qubit received 
by Bob can be first sent to a cNOT gate and then Hadamard gate. 
 

So, if the cNOT gate is first applied to the 2 qubits received by Bob, then the outputs are as follows: 
 
00+11 → cNOT gate → 00+10 
 
10+01 → cNOT gate → 11+01 
 
 00-11 → cNOT gate → 00-10 
 
10-01 → cNOT gate → 11-01 
 
When Hadamard gate is applied to the output of cNOT gates then the following outputs can be observed: 
 

00+10 →Hadamard gate→ 
|00>+ |10>

√2
 + 

|00>− |10>

√2
 = 00 

 

11+01 →Hadamard gate→ 
|01>− |11>

√2
 + 

|01>+ |11>

√2
 = 01 

 

00-10 →Hadamard gate→ 
|00>+ |10>

√2
 - 

|00>− |10>

√2
 = 10 

 

11-01 →Hadamard gate→ 
|01>+ |11>

√2
 - 

|01>− |11>

√2
 = -11 
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Figure 24: Decoding the classical bits from quantum bits 

These outputs are measured as shown in Figure 24 and Bob would be able to decode the classical 
information sent by Alice. Hence, this procedure enables transmission of 2 classical bits using 1 quantum bit. 
In a way, this can be seen as encoding and decoding classical information using quantum bits. There are 
other ways such as Quantum Teleportation where the quantum properties can be leveraged to transmit 
information in 2 quantum bits via single classical bit. 
 

Conclusion 

Shor’s algorithm is an example which took advantage of the special features of quantum computers  
to create an algorithm that could solve integer factorization with much better scaling much than the best 
classical algorithm. The best classical algorithm is exponential, whereas Shor’s algorithm is polynomial 
which is a huge deal in the world of complexity theory and computer science in general because it makes an 
intractable problem into one that can be solved. 

 
There is no conclusion to this topic but what’s interesting to note is that some of the problems or use cases 
which can’t be solved using classical computers can be solved using quantum computers by leveraging 
quantum properties to our advantage. During this process, the information toggles between quantum and 
classical bits thereby pointing out the need for coexistence of both classical and quantum computers. In other 
words, hybrid computing is going to be the means for the future of computing.  
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