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Abstract 

Deep Neural Networks has become increasingly popular and emerged as one of the significant ideas of 

machine learning in the last decade. Deep Learning is applied to many key problems in various applications 

which gave efficient results. 

In this article, several tuning techniques of deep neural networks are discussed which enhances the 

performance of the overall deep network. Also, a novel deep neural network is developed and applied on a 

benchmark dataset “CIFAR-10” to showcase the results and working of these tuning techniques. 

The results of this work act as a use case to highlight the need for a world class hardware and infrastructure 

to apply these techniques in real time on industry level problems and applications. 
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A1.1 Introduction 

Deep learning has revolutionized the field of machine learning. The advent of deep learning has facilitated 

efficient solutions for high dimensional problems thus creating newer possibilities and opportunities. Deep 

learning is being applied across several applications in various domains.  

 

Research in the area of deep learning is very dynamic and progressing at rocket speed every year. Newer 

models are tested on benchmark datasets to exceed previously set achievements. Section-A of this article 

highlights some of the fields where deep learning is being applied and will also focus on the evolution of 

some of the successful deep learning models related to computer vision. 

 

The deep learning models evolved over time have introduced several hyper parameters in each of those 

networks and it’s important to tune these hyper parameters to obtain higher efficiencies. The hyper 

parameters involved in the deep learning models and their tuning will be discussed in Section-B.  

 

Section-C explores a deep learning model for a benchmark image dataset called CIFAR-10 which involves 

fine-tuning techniques and implementation of this model on GPU hardware. This leads to a crucial point on 

the hardware requirements to run these deep learning models efficiently which will be discussed in 

Section-D where the need for world class infrastructure is detailed.[4] 

 

A1.2 Applications of deep learning 

Deep learning has a wider application in various fields; retail, financial, energy, manufacturing, business, 

security, telecom, automotive, speech analytics, telecom, etc. In particular, deep learning has 

outperformed traditional machine learning and human capabilities in the image processing of computer 

vision. 

 

Some of the image-related applications where deep learning performed extremely well are detection of 

brain tumor using CT scans, analyzing MRI images, cancer detection based on scan images, optical 

character recognition, autonomous driving vehicles, manufacturing defect detection through images, etc. 

Figure 1 gives an overview of deep learning applications. 
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Figure 1: Applications of Deep learning 

A1.3 Evolution of Deep learning models 

It is beneficial to know how deep learning models have evolved and the various experimentations in history 

that led to the current state of art models. The idea of artificial intelligence was popularized in the 1940’s 

and it was in 1943 when the artificial neuron was developed which was one of the first step towards neural 

networks.  

 

The backpropagation algorithm that was proposed by Geoffrey Hinton in 1986 was a key development in 

the deep learning area and it is used even in the state-of-the-art models today. Yann LeCun is credited with 

developing one of the breakthrough neural network architectures – LeNet – which has 2 convolution and 3 

fully connected layers. This is one of the earliest networks to implement backpropagation algorithm in 

multi-layer networks with around 60000 parameters. This is also one of the standard networks which has 

put forth the architecture in layers with a stack of convolution layers. 

 

The timeline detailing the evolution of deep learning models is shown in Figure 2. Observe that Google and 

Microsoft have come up with state-of-the-art models called GoogleNet (Inception Net) and ResNet.[5] 
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Figure 2: Timeline of Deep learning model evolution 

These are multi-layered networks where ResNet by Microsoft is about 152 layers and has surpassed human 

performance in 2015 for some of the benchmark datasets. The performance indicator in these models is its 

accuracy to classify the given multiclass image datasets, like CIFAR-10. 

 

The annual ImageNet Large Scale Visual Recognition Challenge (ILSVRC) introduces many new models 

which aim for efficient architectures from an accuracy perspective on the benchmark datasets. Figure 3 

shows the top 5 error % obtained by various models in different years. [7] 

 

Evolution of these models over the years not only showcases the improvement in classification accuracies 

but also the introduction of various techniques and novel architectures. Every model offered something 

novel to previous models that has made it successful. Until 2011, shallow network models from traditional 

computer vision had been on the top of the list.  
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Figure 3: ILSVRC Top 5 error % on ImageNet 

The AlexNet in 2012 is one of the first deep learning networks to win ILSVRC. In subsequent years deep 

learning models have outperformed traditional computer vision models and by 2015 deep learning models 

have even outperformed human performance in classifying images. [8] 

 

Notice in Figure 3 that as the newer models were introduced, the number of layers kept increasing. This 

conveys that deep learning models with deeper layers are more successful than the wider layered 

networks. The introduction of these varied architectures introduces newer hyper parameters and it is 

equally important to fine tune these hyper parameters to achieve success. 

B1.1 Working of deep learning models 

Deep learning models are used in supervised, unsupervised learning and reinforcement learning paradigms. 

In this section, a supervised classification task for image data will be discussed. Any typical deep learning 

model requires training data for training the network and this training data will be labeled data for 

supervised learning tasks. One such training data set is CIFAR-10 dataset which contains around 60000 

images in 10 different classes.  
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Figure 4: Deep learning model 

A neural network library such as Keras can be used to formulate the model definition and the model along 

with training dataset will be trained on GPU-enabled hardware. Once the model is trained, its accuracy will 

be evaluated using testing data. This entire set of tasks depicted in Figure 4 require a great deal of 

parameter tuning in order to optimize the network. Prior to understanding the parameters to be fine-

tuned, it’s important to understand what happens to the images when traversed in the network. 

B1.2 Network Internals 

The input images to a deep learning network traverse several layers in the network. The presence of 

several layers helps the network learn the details in the images. The initial layers of the network capture 

the edges in the input images and the next set of layers learn the gradients of the images. As the input 

images progress toward the next layers, the network learns the textures, patterns, parts of objects and 

eventually, the overall objects itself which helps in classifying the classes.[1] 

 

Figure 5: Visualization of images inside the layers 
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The network first learns low-level features and as the inputs traverse the network, it learns mid-level and 

high-level features that will make the network learn to classify the classes of images. 

B1.3 Parameters and Hyperparameters 

The deep learning network design consists of several building blocks such as layers, optimizers, activation 

functions, etc. The model has several parameters in the form of weights which depends on the complexity 

of the model. The training of the network involves changing the weights of the model via backpropagation 

algorithm to minimize the loss. [9] 

 

Figure 6: Parameters and Hyperparameters 

Apart from the parameters of the network, there are several hyperparameters of the network which 

dictate its performance. 

B1.4 Hyperparameter Tuning 

It is important to tune the hyperparameters of a deep learning network as optimizing these 

hyperparameters would enhance the overall network performance. Some of the hyperparameters are 

mentioned in this section. 

Layers: Number of layers is decided based on the way edges/gradients -> textures -> patterns -> parts of 

objects -> objects are obtained. 
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Receptive Field:  Depending on the size of input images, one needs to estimate the receptive field needed 

to obtain edges, textures, patterns, parts of objects and objects. 

MaxPooling: Helps reduce the number of layers required in a network by reducing the dimensionality by 

75%. 

SoftMax: Softmax tries to squish the output between the required range. 

Image Normalization: Ensures that all the pixel intensities are within the required range 0-1. 

Batch Normalization: Ensures that every feature obtained through a kernel has the same weightage after 

each convolution layer. 

DropOut: Dropouts will resolve overfitting issues by randomly turning off some of the kernels. This will 

allow the network to learn new features. 

Batch Size: The batch size usually depends on the complexity/quantity of images and is also dependent on 

hardware. Greater batch size at constant learning rate will make the training faster but requires powerful 

hardware. 

Learning Rate: The rate at which the network learns can be tweaked using learning rate. 

Adam vs SGD Optimizer: The choice of optimizer impacts the learning rate.

 

Figure 7: Hyperparameters and their Sensitivity 

Kernel Size: Kernels are unique individual basic building blocks of an image. These are also called feature 

extractor as they constitute unique features of an image. Some examples are vertical edges or horizontal 

edges. 
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LR schedule: As the number of epoch increase, the network would have learnt more than at the state it 

started and hence it requires lower learning rate comparative to beginning of training. Thus, an adaptive 

learning rate would enhance training quality. 

Each of the hyperparameters has its own sensitivity towards the performance of the deep learning 

network, as depicted in Figure 7.  

C1.1 Use Case – CIFAR-10 datasetThe hyperparameters tuning and working can be observed in this 

section. A modified ResNet model has been developed which is trained on CIFAR-10 dataset shown in 

Figure 8. This dataset is one of the benchmark datasets that has images of 10 different classes. It has 60000 

images of size 32x32 pixels each. 

 

Figure 8: CIFAR-10 dataset 

The CIFAR-10 dataset is divided into 50000 images for training and 10000 images for testing the model. 

C1.2 UseCase – Modified ResNet Model 

ResNet model was originally developed by Microsoft team and it has created a breakthrough in the 

classification accuracies in ILSVRC challenge 2015 which exceeded human performance. 

ResNet is more a deep layered model than a wide layered model. While, In theory, any function can be 

represented by a huge single layer, this leads to overfitting the data as per the universal approximation 
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theorem. Thus, most successful models are deeper than wide and hence, the modified ResNet model 

developed in this section is also deeper. 

The modified ResNet model developed has similarities from ResNet-18 model released by Microsoft. The 

similarities include the presence of identity block and projection blocks as illustrated in Figure 9. The 

identity blocks have skip level connections which help to provide varied receptive fields towards the deeper 

layers. [3] 

 

Figure 9: Identity and Projection blocks 

The 32x32x3 color images were padded with zeros to conserve the features on the edge of the images and 

then passed through a series of convolution layers. The input features also pass through a series of identity 

and projection blocks for extracting edges, gradients, textures, parts of objects and objects thus providing 

varied receptive fields to deeper layers for better classification.[3] 
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Activation function Relu is used throughout and towards the end, SoftMax function is used to squish the 

output between a defined range. Figure 10 illustrates the overall modified ResNet developed. The model 

developed is quite powerful in extracting the features of input images and it uses the backpropagation 

algorithm. 

 

Figure 10: Modified ResNet-18 model 

C1.2.1 Mathematics behind the modified ResNet model  

Figure 11 depicts the residual network which form the foundation of the ResNet. 

 

Figure 11: Residual Net 
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Input x is processed between 2 convolution layers and F(x) is obtained. Finally, the output of the residual 

network H(x) is obtained by addition of x and F(x). 

F(x) = Output – Input = H(x) – x        (1) 

H(x) = F(x) + x          (2) 

The backpropagation in ResNet for one layer is computed by (3) 

𝑥𝑙+1 =  𝜆𝑙𝑥𝑙 +  ℱ(𝑥𝑙 , 𝑊𝑙)                                                                                                                   (3) 

𝑥𝐿 = (∏ 𝜆𝑖

𝐿−1

𝑖=𝑙

) 𝑥𝑙 +  ∑ ℱ(

𝐿−1

𝑖=𝑙

𝑥𝑖, 𝑊𝑖)                                                                                                  (4) 

The backpropagation in ResNet for L layers from i-th layer is given by (4). 

C1.3 Evaluation of the modified ResNet 

The modified ResNet is implemented in Google Collaboratory which provides GPU infrastructure to train 

the network. Figure 12 shows the model accuracy and loss for the training and validation data for 50 

epochs run. The training accuracy reached 96.4% and validation accuracy reached up to 88.19%. The code 

for the model is partially mentioned in the Appendix. 

 

Figure 12: Model Accuracy and Loss 

The reason GPU infrastructure is needed is because the network has approximately 3 million parameters to 

be trained which would need several parallel operations to take place. 

Total params: 2,857,930; Trainable params: 2,854,218; Non-trainable params: 3,712 
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The model training took around 76 minutes due to the utilization of GPU infrastructure. To train with CPU 

architectures would have taken several hours. This use case showcases the need for a GPU-enabled 

infrastructures to train deep learning models. 

D1.1 Infrastructure needs for deep learning models 

The deep learning model developed in the previous section was trained on image data and that required 

GPU-enabled infrastructure during training. GPU’s provide high compute densities compared to CPU’s and 

one of the primary reasons for the use of GPU’s for deep learning models is that they are built for parallel 

operations. The deep learning models require a lot of matrix multiplications which can be performed 

through several arithmetic-logic units (ALU’s) parallelly in a GPU. The presence of more ALU’s in GPU’s is 

the reason for parallel operations. In addition, GPU’s provide high throughput and high tolerance to 

latencies. Thus, GPU-enabled hardware is pivotal to handle large datasets in deep learning models. 

Figure 13 depicts that as the network deepens, the number of parameters also increases rapidly and thus 

requires more computational resources. 

 

Figure 13: Data Compute Algorithm 

It can be observed that large datasets are usually unstructured, mostly image/video data and tend to have 

high capacity and processing power requirements. Figure 14 illustrates the capacity and performance 

requirements for business intelligence, machine learning and deep learning models.[6] 
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Figure 14: Infrastructure Requirements 

Capacity and performance requirements also depend on the dimensionality of the problem and the data 

size as shown in Figure 15. One can relate that the traditional machine learning problems would be 

addressing low dimensional and low data size problems while the high dimensional and high data size 

problems are addressed by deep learning models.[2] 

 

Figure 15: Dimensionality per data types 

D1.2 World-class infrastructures 

The Google Collaboratory that was leveraged in training the modified ResNet model in Section C provides 

GPU access for a duration of 12 hours and hence, serves the purposes for some academicians. However, 

industrial and real-time use cases and applications needs to depend on a robust world-class infrastructure 

as the hardware requirements are unique and huge as seen in Figure 16.[6] 
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Figure 16: Hardware requirements for deep learning 

From a business perspective one can leverage heterogenous hardware including compute, networking and 

storage for running deep learning models. However, we find that the ready solutions for deep learning 

from some vendors are performing well.  

For example, the Dell EMC Ready Solution for deep learning delivered tremendous results on benchmark 

ImageNet dataset as shown in Figure 17. These ready solutions include Dell EMC PowerEdge C4140 servers 

with 4 Tesla V100 GPU’s. The solution also contains Dell EMC Isilon F800 storage hardware which comes 

with 4 nodes. Thus, Dell EMC Ready Solutions for AI are the best fit for training large datasets on deep 

learning models.[2] 
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Figure 17: Performance of Dell EMC Isilon Ready Solution on ResNet-50 

D1.3 Conclusion 

The tremendous opportunities that deep learning enables in various fields will continue to grow as more 

breakthrough models are created. Once the models are created, various fine-tuning techniques discussed 

in this article could help achieve expected performance and results. 

The modified ResNet model developed in this article trained on benchmark dataset CIFAR-10 proves the 

necessity of a world-class hardware for deep learning applications. The growing need of deep learning 

applications will in turn create greater need for GPU- or FPGA-enabled hardware to meet performance and 

capacity demands. 

A comparison is drawn between the performance of separate hardware components and Dell EMC Ready 

Solution. Designed to readily plug-in for training deep learning models in real-time, the scalable, robust and 

easily configurable Dell EMC Ready Solution clearly demonstrates its ability perform better in meeting 

business needs.  
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APPENDIX 

APPENDIX – Python code for Deep learning – modified ResNet Model for CIFAR-10  

“import time 

import numpy as np 

import keras 

import keras.utils 

import matplotlib.pyplot as plt 

% matplotlib inline 

np.random.seed(2017)  

from keras import backend as K 

from keras.models import Sequential, Model 

from keras.layers.convolutional import Convolution2D, MaxPooling2D, SeparableConv2D, Conv2D 

from keras.layers import Activation, Flatten, Dense, Dropout, Input, concatenate, ZeroPadding2D, Dropout, AveragePooling2D 

from keras.layers.normalization import BatchNormalization 

from keras.layers import SpatialDropout2D, Add, GlobalAveragePooling2D 

from keras.utils import np_utils 

from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, EarlyStopping, LearningRateScheduler 

from keras.preprocessing.image import ImageDataGenerator 

from sklearn.metrics import log_loss, roc_auc_score, accuracy_score 

from keras.losses import binary_crossentropy 

from keras.metrics import binary_accuracy 

from keras.callbacks import * 

from keras.optimizers import Adam, SGD 

from keras import regularizers 

from keras.callbacks import Callback 

import cv2  

from keras.datasets import cifar10 

import tflearn 

from tflearn.data_augmentation import ImageAugmentation” 
 

“# GRADED FUNCTION: identity_block 

 

def identity_block(X, filters, stage, block): 

    #weight_decay = 5e-4 

    # defining name basis 

    conv_name_base = 'res' + str(stage) + block + '_branch' 

    bn_name_base = 'bn' + str(stage) + block + '_branch' 

     

    # Retrieve Filters 

    F1, F2 = filters 

    # Save the input value. You'll need this later to add back to the main path.  

    X_shortcut = X” 

    “# First component of main path 

    X = BatchNormalization(axis = 3, name = bn_name_base + '1a')(X) 
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    X = Activation('relu')(X) 

    #X = Conv2D(filters = F1, kernel_size = (3, 3), strides = (1,1), padding = 'same', kernel_regularizer=regularizers.l2(weight_decay), 

name = conv_name_base + '2a')(X) 

    X = Conv2D(filters = F1, kernel_size = (3, 3), strides = (1,1), padding = 'same',  name = conv_name_base + '2a')(X) 

    X=SpatialDropout2D(0.1)(X) 

    # Second component of main path (≈3 lines) 

    X = BatchNormalization(axis = 3, name = bn_name_base + '1b')(X) 

    X = Activation('relu')(X) 

    #X = Conv2D(filters = F2, kernel_size = (3, 3), strides = (1,1), padding = 'same', kernel_regularizer=regularizers.l2(weight_decay), 

name = conv_name_base + '2b')(X) 

    X = Conv2D(filters = F2, kernel_size = (3, 3), strides = (1,1), padding = 'same',  name = conv_name_base + '2b')(X) 

    X=SpatialDropout2D(0.1)(X) 

   # Final step: Add shortcut value to main path, and pass it through a RELU activation (≈2 lines) 

    X = Add()([X, X_shortcut]) 

    return X 

 

# GRADED FUNCTION: projection_block 

def projection_block(X, filters, stage, block): 

    weight_decay = 5e-4 

    # defining name basis 

    conv_name_base = 'res' + str(stage) + block + '_branch' 

    bn_name_base = 'bn' + str(stage) + block + '_branch' 

   # Retrieve Filters 

    F1, F2 = filters 

   # Save the input value. You'll need this later to add back to the main path.  

    X_shortcut = X 

 

    # First component of main path 

    X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X) 

    X = Activation('relu')(X) 

    #X = Conv2D(filters = F1, kernel_size = (3, 3), strides = (2,2), padding = 'same', kernel_regularizer=regularizers.l2(weight_decay), 

name = conv_name_base + '2a')(X) 

    X = Conv2D(filters = F1, kernel_size = (3, 3), strides = (2,2), padding = 'same', name = conv_name_base + '2a')(X) 

    X=SpatialDropout2D(0.1)(X) 

    # Second component of main path (≈3 lines) 

    X = BatchNormalization(axis = 3, name = bn_name_base + '2b')(X) 

  X = Activation('relu')(X) 

    #X = Conv2D(filters = F2, kernel_size = (3, 3), strides = (1,1), padding = 'same', kernel_regularizer=regularizers.l2(weight_decay), 

name = conv_name_base + '2b')(X) 

    X = Conv2D(filters = F2, kernel_size = (3, 3), strides = (1,1), padding = 'same', name = conv_name_base + '2b')(X)” 

   “X=SpatialDropout2D(0.1)(X) 

    # Third component outside main path 
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    X_shortcut = Conv2D(filters = F1, kernel_size = (1, 1), strides = (2,2), padding = 'same', name = conv_name_base + 

'2c')(X_shortcut) 

    # Final step: Add shortcut value to main path, and pass it through a RELU activation (≈2 lines) 

    X = Add()([X, X_shortcut]) 

    return X 

 

x0=Input(shape=(32, 32, 3)) 

x1=ZeroPadding2D((3,3))(x0) 

x1 = Conv2D(32, (7, 7), strides = (1, 1), name = 'conv1',padding='same')(x1) 

x1=BatchNormalization()(x1) 

x1= Activation('relu')(x1) 

x1 = MaxPooling2D((2, 2), strides=(1, 1), name = 'pooling1')(x1) 

x2 = identity_block(x1, [32,32], stage=1, block='a') 

x3 = identity_block(x2, [32,32], stage=1, block='b') 

#x3=Conv2D(filters = 64, kernel_size = (1, 1))(x3) 

x3 = projection_block(x3, [64,64], stage=2, block='a') 

x4 = identity_block(x3, [64,64], stage=2, block='b') 

#x4=Conv2D(filters = 32, kernel_size = (1, 1))(x4) 

x4 = projection_block(x4, [128,128], stage=3, block='a') 

x5 = identity_block(x4, [128,128], stage=3, block='b') 

#x5=Conv2D(filters = 32, kernel_size = (1, 1))(x5) 

x5 = projection_block(x5, [256,256], stage=4, block='a') 

x6 = identity_block(x5, [256,256], stage=4, block='b') 

#x6=Conv2D(64, (3, 3), activation='relu')(x6) 

#x6=BatchNormalization()(x6) 

#x6=Conv2D(10, (1, 1), padding="same",activation='relu')(x6) 

#x6=MaxPooling2D((2, 2),padding="same")(x6) 

x6 = AveragePooling2D(strides=(2,2))(x6) 

x6=Conv2D(filters = 64, kernel_size = (1, 1), strides=(1,1),padding="same")(x6) 

x6=BatchNormalization()(x6) 

x6 = Activation('relu')(x6) 

x6=Conv2D(64, (3, 3), padding="same")(x6) 

x6=BatchNormalization()(x6) 

x6 = Activation('relu')(x6) 

x6=Conv2D(10, (1, 1), padding="same",activation='relu')(x6) 

x6 = AveragePooling2D(strides=(2,2))(x6) 

seq = Flatten()(x6) 

predictions = Activation('softmax')(seq) 

model = Model(inputs=x0, outputs=predictions, name='ResNet') 

model.summary()” 

 

“from IPython.display import SVG 
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from keras.utils.vis_utils import model_to_dot 

SVG(model_to_dot(model).create(prog='dot', format='svg')) 

batch_size = 128 

epochs=50 

 

model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.3, momentum=0.9, nesterov=False), metrics=['accuracy']) 

datagen_cut = ImageDataGenerator(zoom_range=0.0,horizontal_flip=True, preprocessing_function=get_random_eraser(p=0.5, 

s_l=0.02, s_h=0.4, r_1=0.3, r_2=1/0.3,  v_l=0, v_h=1, pixel_level=False)) 

 

sched = OneCycle(min_lr=0.07, max_lr=0.9, min_mtm = 0.75, max_mtm = 0.9, annealing_stage=0.08, annealing_rate=0.009, 

          training_iterations=np.ceil(((X_train.shape[0]*epochs)/(batch_size)))) 

 

mcp_save = ModelCheckpoint('.mdl_wts.hdf5', save_best_only=True, monitor='val_acc', verbose=1) 

# train the model 

start = time.time() 

# Train the model 

model_info = model.fit_generator(datagen_cut.flow(X_train, Y_train, batch_size = 128),  samples_per_epoch = Y_train.shape[0], 

nb_epoch = 50,  validation_data = (X_test, Y_test), callbacks=[sched,mcp_save]) 

end = time.time() 

 

output: 

 

Epoch 1/50 

390/390 [==============================] - 95s 243ms/step - loss: 1.6571 - acc: 0.3909 - val_loss: 1.8933 - val_acc: 0.3944 

Epoch 00001: val_acc improved from -inf to 0.39440, saving model to .mdl_wts.hdf5 

Epoch 2/50 

390/390 [==============================] - 91s 234ms/step - loss: 1.3039 - acc: 0.5268 - val_loss: 1.3534 - val_acc: 0.5242 

Epoch 00002: val_acc improved from 0.39440 to 0.52420, saving model to .mdl_wts.hdf5 

Epoch 3/50 

390/390 [==============================] - 91s 233ms/step - loss: 1.1004 - acc: 0.6072 - val_loss: 1.2767 - val_acc: 0.5703 

Epoch 00003: val_acc improved from 0.52420 to 0.57030, saving model to .mdl_wts.hdf5 

............ 

Epoch 00048: val_acc improved from 0.87320 to 0.87780, saving model to .mdl_wts.hdf5 

Epoch 49/50 

390/390 [==============================] - 91s 233ms/step - loss: 0.1061 - acc: 0.9641 - val_loss: 0.4929 - val_acc: 0.8805 

Epoch 00049: val_acc improved from 0.87780 to 0.88050, saving model to .mdl_wts.hdf5 

Epoch 50/50 

390/390 [==============================] - 91s 233ms/step - loss: 0.0975 - acc: 0.9671 - val_loss: 0.4907 - val_acc: 0.8819 

Epoch 00050: val_acc improved from 0.88050 to 0.88190, saving model to .mdl_wts.hdf5” 
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