
Knowledge Sharing Article
© 2020 Dell Inc. or its subsidiaries.

FINE-TUNING DEEP NEURAL
NETWORKS

SECURING MEMORY SHARING
FOR CLOUD TENANTS

Rajasekhar Nannapaneni
Sr Principal Engineer, Solutions Architect
Dell EMC
Rajasekhar.nannapaneni@dell.com

2020 Dell Technologies Proven Professional Knowledge Sharing 2

The Dell Technologies Proven Professional Certification program validates a wide range of skills and

competencies across multiple technologies and products.

From Associate, entry-level courses to Expert-level, experience-based exams, all professionals in or looking

to begin a career in IT benefit from industry-leading training and certification paths from one of the world’s

most trusted technology partners.

Proven Professional certifications include:

• Cloud

• Converged/Hyperconverged Infrastructure

• Data Protection

• Data Science

• Networking

• Security

• Servers

• Storage

• Enterprise Architect

Courses are offered to meet different learning styles and schedules, including self-paced On Demand,

remote-based Virtual Instructor-Led and in-person Classrooms.

Whether you are an experienced IT professional or just getting started, Dell Technologies Proven

Professional certifications are designed to clearly signal proficiency to colleagues and employers.

Learn more at www.dell.com/certification

Dell.com/certification 3

Abstract

Deep Neural Networks has become increasingly popular and emerged as one of the significant ideas of

machine learning in the last decade. Deep Learning is applied to many key problems in various applications

which gave efficient results.

In this article, several tuning techniques of deep neural networks are discussed which enhances the

performance of the overall deep network. Also, a novel deep neural network is developed and applied on a

benchmark dataset “CIFAR-10” to showcase the results and working of these tuning techniques.

The results of this work act as a use case to highlight the need for a world class hardware and infrastructure

to apply these techniques in real time on industry level problems and applications.

2020 Dell Technologies Proven Professional Knowledge Sharing 4

Table of Contents

Abstract ... 3

List of Figures ... 5

Glossary ... 5

A1.1 Introduction ... 6

A1.2 Applications of deep learning.. 6

A1.3 Evolution of Deep learning models ... 7

B1.1 Working of deep learning models ... 9

B1.2 Network Internals .. 10

B1.3 Parameters and Hyperparameters .. 11

B1.4 Hyperparameter Tuning .. 11

C1.1 Use Case – CIFAR-10 dataset ... 13

C1.2 UseCase – Modified ResNet Model ... 13

C1.2.1 Mathematics behind the modified ResNet model ... 15

C1.3 Evaluation of the modified ResNet.. 16

D1.1 Infrastructure needs for deep learning models .. 17

D1.2 World-class infrastructures ... 18

D1.3 Conclusion ... 20

References ... 21

APPENDIX ... 22

APPENDIX – Python code for Deep learning – modified ResNet Model for CIFAR-10 22

Dell.com/certification 5

List of Figures

Figure No. Figure Caption Pg.No.

Figure 1 Applications of Deep learning 8

Figure 2 Timeline of Deep learning model evolution 9

Figure 3 ILSVRC Top 5 error % on ImageNet 10

Figure 4 Deep Learning model 11

Figure 5 Visualization of images inside the layers 12

Figure 6 Parameters and Hyperparameters 13

Figure 7 Hyperparameters and their Sensitivity 14

Figure 8 CIFAR-10 dataset 15

Figure 9 Identity and Projection blocks 17

Figure 10 Modified ResNet-18 model 18

Figure 11 Residual Net 18

Figure 12 Model Accuracy and Loss 19

Figure 13 Data Compute Algorithm 21

Figure 14 Infrastructure Requirements 21

Figure 15 Dimensionality per data types 22

Figure 16 Hardware requirements for deep learning 23

Figure 17 Performance of Dell EMC Isilon Ready Solution on ResNet-50 24

Glossary

Abbreviation Full Form

DL Deep Learning

RESNET Residual Network

ILSVRC ImageNet Large Scale Visual Recognition Challenge

RL Reinforcement Learning

CIFAR Canadian Institute for Advanced Research

GPU Graphics Processing Unit

CPU Central Processing Unit

FPGA Field-Programmable Gate Array

ALU Arithmetic Logic Unit

ML Machine Learning

Disclaimer: The views, processes or methodologies published in this article are those of the author. They do

not necessarily reflect Dell Technologies’ views, processes or methodologies.

2020 Dell Technologies Proven Professional Knowledge Sharing 6

A1.1 Introduction

Deep learning has revolutionized the field of machine learning. The advent of deep learning has facilitated

efficient solutions for high dimensional problems thus creating newer possibilities and opportunities. Deep

learning is being applied across several applications in various domains.

Research in the area of deep learning is very dynamic and progressing at rocket speed every year. Newer

models are tested on benchmark datasets to exceed previously set achievements. Section-A of this article

highlights some of the fields where deep learning is being applied and will also focus on the evolution of

some of the successful deep learning models related to computer vision.

The deep learning models evolved over time have introduced several hyper parameters in each of those

networks and it’s important to tune these hyper parameters to obtain higher efficiencies. The hyper

parameters involved in the deep learning models and their tuning will be discussed in Section-B.

Section-C explores a deep learning model for a benchmark image dataset called CIFAR-10 which involves

fine-tuning techniques and implementation of this model on GPU hardware. This leads to a crucial point on

the hardware requirements to run these deep learning models efficiently which will be discussed in

Section-D where the need for world class infrastructure is detailed.[4]

A1.2 Applications of deep learning

Deep learning has a wider application in various fields; retail, financial, energy, manufacturing, business,

security, telecom, automotive, speech analytics, telecom, etc. In particular, deep learning has

outperformed traditional machine learning and human capabilities in the image processing of computer

vision.

Some of the image-related applications where deep learning performed extremely well are detection of

brain tumor using CT scans, analyzing MRI images, cancer detection based on scan images, optical

character recognition, autonomous driving vehicles, manufacturing defect detection through images, etc.

Figure 1 gives an overview of deep learning applications.

Dell.com/certification 7

Figure 1: Applications of Deep learning

A1.3 Evolution of Deep learning models

It is beneficial to know how deep learning models have evolved and the various experimentations in history

that led to the current state of art models. The idea of artificial intelligence was popularized in the 1940’s

and it was in 1943 when the artificial neuron was developed which was one of the first step towards neural

networks.

The backpropagation algorithm that was proposed by Geoffrey Hinton in 1986 was a key development in

the deep learning area and it is used even in the state-of-the-art models today. Yann LeCun is credited with

developing one of the breakthrough neural network architectures – LeNet – which has 2 convolution and 3

fully connected layers. This is one of the earliest networks to implement backpropagation algorithm in

multi-layer networks with around 60000 parameters. This is also one of the standard networks which has

put forth the architecture in layers with a stack of convolution layers.

The timeline detailing the evolution of deep learning models is shown in Figure 2. Observe that Google and

Microsoft have come up with state-of-the-art models called GoogleNet (Inception Net) and ResNet.[5]

2020 Dell Technologies Proven Professional Knowledge Sharing 8

Figure 2: Timeline of Deep learning model evolution

These are multi-layered networks where ResNet by Microsoft is about 152 layers and has surpassed human

performance in 2015 for some of the benchmark datasets. The performance indicator in these models is its

accuracy to classify the given multiclass image datasets, like CIFAR-10.

The annual ImageNet Large Scale Visual Recognition Challenge (ILSVRC) introduces many new models

which aim for efficient architectures from an accuracy perspective on the benchmark datasets. Figure 3

shows the top 5 error % obtained by various models in different years. [7]

Evolution of these models over the years not only showcases the improvement in classification accuracies

but also the introduction of various techniques and novel architectures. Every model offered something

novel to previous models that has made it successful. Until 2011, shallow network models from traditional

computer vision had been on the top of the list.

Dell.com/certification 9

Figure 3: ILSVRC Top 5 error % on ImageNet

The AlexNet in 2012 is one of the first deep learning networks to win ILSVRC. In subsequent years deep

learning models have outperformed traditional computer vision models and by 2015 deep learning models

have even outperformed human performance in classifying images. [8]

Notice in Figure 3 that as the newer models were introduced, the number of layers kept increasing. This

conveys that deep learning models with deeper layers are more successful than the wider layered

networks. The introduction of these varied architectures introduces newer hyper parameters and it is

equally important to fine tune these hyper parameters to achieve success.

B1.1 Working of deep learning models

Deep learning models are used in supervised, unsupervised learning and reinforcement learning paradigms.

In this section, a supervised classification task for image data will be discussed. Any typical deep learning

model requires training data for training the network and this training data will be labeled data for

supervised learning tasks. One such training data set is CIFAR-10 dataset which contains around 60000

images in 10 different classes.

2020 Dell Technologies Proven Professional Knowledge Sharing 10

Figure 4: Deep learning model

A neural network library such as Keras can be used to formulate the model definition and the model along

with training dataset will be trained on GPU-enabled hardware. Once the model is trained, its accuracy will

be evaluated using testing data. This entire set of tasks depicted in Figure 4 require a great deal of

parameter tuning in order to optimize the network. Prior to understanding the parameters to be fine-

tuned, it’s important to understand what happens to the images when traversed in the network.

B1.2 Network Internals

The input images to a deep learning network traverse several layers in the network. The presence of

several layers helps the network learn the details in the images. The initial layers of the network capture

the edges in the input images and the next set of layers learn the gradients of the images. As the input

images progress toward the next layers, the network learns the textures, patterns, parts of objects and

eventually, the overall objects itself which helps in classifying the classes.[1]

Figure 5: Visualization of images inside the layers

Dell.com/certification 11

The network first learns low-level features and as the inputs traverse the network, it learns mid-level and

high-level features that will make the network learn to classify the classes of images.

B1.3 Parameters and Hyperparameters

The deep learning network design consists of several building blocks such as layers, optimizers, activation

functions, etc. The model has several parameters in the form of weights which depends on the complexity

of the model. The training of the network involves changing the weights of the model via backpropagation

algorithm to minimize the loss. [9]

Figure 6: Parameters and Hyperparameters

Apart from the parameters of the network, there are several hyperparameters of the network which

dictate its performance.

B1.4 Hyperparameter Tuning

It is important to tune the hyperparameters of a deep learning network as optimizing these

hyperparameters would enhance the overall network performance. Some of the hyperparameters are

mentioned in this section.

Layers: Number of layers is decided based on the way edges/gradients -> textures -> patterns -> parts of

objects -> objects are obtained.

2020 Dell Technologies Proven Professional Knowledge Sharing 12

Receptive Field: Depending on the size of input images, one needs to estimate the receptive field needed

to obtain edges, textures, patterns, parts of objects and objects.

MaxPooling: Helps reduce the number of layers required in a network by reducing the dimensionality by

75%.

SoftMax: Softmax tries to squish the output between the required range.

Image Normalization: Ensures that all the pixel intensities are within the required range 0-1.

Batch Normalization: Ensures that every feature obtained through a kernel has the same weightage after

each convolution layer.

DropOut: Dropouts will resolve overfitting issues by randomly turning off some of the kernels. This will

allow the network to learn new features.

Batch Size: The batch size usually depends on the complexity/quantity of images and is also dependent on

hardware. Greater batch size at constant learning rate will make the training faster but requires powerful

hardware.

Learning Rate: The rate at which the network learns can be tweaked using learning rate.

Adam vs SGD Optimizer: The choice of optimizer impacts the learning rate.

Figure 7: Hyperparameters and their Sensitivity

Kernel Size: Kernels are unique individual basic building blocks of an image. These are also called feature

extractor as they constitute unique features of an image. Some examples are vertical edges or horizontal

edges.

Dell.com/certification 13

LR schedule: As the number of epoch increase, the network would have learnt more than at the state it

started and hence it requires lower learning rate comparative to beginning of training. Thus, an adaptive

learning rate would enhance training quality.

Each of the hyperparameters has its own sensitivity towards the performance of the deep learning

network, as depicted in Figure 7.

C1.1 Use Case – CIFAR-10 datasetThe hyperparameters tuning and working can be observed in this

section. A modified ResNet model has been developed which is trained on CIFAR-10 dataset shown in

Figure 8. This dataset is one of the benchmark datasets that has images of 10 different classes. It has 60000

images of size 32x32 pixels each.

Figure 8: CIFAR-10 dataset

The CIFAR-10 dataset is divided into 50000 images for training and 10000 images for testing the model.

C1.2 UseCase – Modified ResNet Model

ResNet model was originally developed by Microsoft team and it has created a breakthrough in the

classification accuracies in ILSVRC challenge 2015 which exceeded human performance.

ResNet is more a deep layered model than a wide layered model. While, In theory, any function can be

represented by a huge single layer, this leads to overfitting the data as per the universal approximation

2020 Dell Technologies Proven Professional Knowledge Sharing 14

theorem. Thus, most successful models are deeper than wide and hence, the modified ResNet model

developed in this section is also deeper.

The modified ResNet model developed has similarities from ResNet-18 model released by Microsoft. The

similarities include the presence of identity block and projection blocks as illustrated in Figure 9. The

identity blocks have skip level connections which help to provide varied receptive fields towards the deeper

layers. [3]

Figure 9: Identity and Projection blocks

The 32x32x3 color images were padded with zeros to conserve the features on the edge of the images and

then passed through a series of convolution layers. The input features also pass through a series of identity

and projection blocks for extracting edges, gradients, textures, parts of objects and objects thus providing

varied receptive fields to deeper layers for better classification.[3]

Dell.com/certification 15

Activation function Relu is used throughout and towards the end, SoftMax function is used to squish the

output between a defined range. Figure 10 illustrates the overall modified ResNet developed. The model

developed is quite powerful in extracting the features of input images and it uses the backpropagation

algorithm.

Figure 10: Modified ResNet-18 model

C1.2.1 Mathematics behind the modified ResNet model

Figure 11 depicts the residual network which form the foundation of the ResNet.

Figure 11: Residual Net

2020 Dell Technologies Proven Professional Knowledge Sharing 16

Input x is processed between 2 convolution layers and F(x) is obtained. Finally, the output of the residual

network H(x) is obtained by addition of x and F(x).

F(x) = Output – Input = H(x) – x (1)

H(x) = F(x) + x (2)

The backpropagation in ResNet for one layer is computed by (3)

𝑥𝑙+1 = 𝜆𝑙𝑥𝑙 + ℱ(𝑥𝑙 , 𝑊𝑙) (3)

𝑥𝐿 = (∏ 𝜆𝑖

𝐿−1

𝑖=𝑙

) 𝑥𝑙 + ∑ ℱ(

𝐿−1

𝑖=𝑙

𝑥𝑖, 𝑊𝑖) (4)

The backpropagation in ResNet for L layers from i-th layer is given by (4).

C1.3 Evaluation of the modified ResNet

The modified ResNet is implemented in Google Collaboratory which provides GPU infrastructure to train

the network. Figure 12 shows the model accuracy and loss for the training and validation data for 50

epochs run. The training accuracy reached 96.4% and validation accuracy reached up to 88.19%. The code

for the model is partially mentioned in the Appendix.

Figure 12: Model Accuracy and Loss

The reason GPU infrastructure is needed is because the network has approximately 3 million parameters to

be trained which would need several parallel operations to take place.

Total params: 2,857,930; Trainable params: 2,854,218; Non-trainable params: 3,712

Dell.com/certification 17

The model training took around 76 minutes due to the utilization of GPU infrastructure. To train with CPU

architectures would have taken several hours. This use case showcases the need for a GPU-enabled

infrastructures to train deep learning models.

D1.1 Infrastructure needs for deep learning models

The deep learning model developed in the previous section was trained on image data and that required

GPU-enabled infrastructure during training. GPU’s provide high compute densities compared to CPU’s and

one of the primary reasons for the use of GPU’s for deep learning models is that they are built for parallel

operations. The deep learning models require a lot of matrix multiplications which can be performed

through several arithmetic-logic units (ALU’s) parallelly in a GPU. The presence of more ALU’s in GPU’s is

the reason for parallel operations. In addition, GPU’s provide high throughput and high tolerance to

latencies. Thus, GPU-enabled hardware is pivotal to handle large datasets in deep learning models.

Figure 13 depicts that as the network deepens, the number of parameters also increases rapidly and thus

requires more computational resources.

Figure 13: Data Compute Algorithm

It can be observed that large datasets are usually unstructured, mostly image/video data and tend to have

high capacity and processing power requirements. Figure 14 illustrates the capacity and performance

requirements for business intelligence, machine learning and deep learning models.[6]

2020 Dell Technologies Proven Professional Knowledge Sharing 18

Figure 14: Infrastructure Requirements

Capacity and performance requirements also depend on the dimensionality of the problem and the data

size as shown in Figure 15. One can relate that the traditional machine learning problems would be

addressing low dimensional and low data size problems while the high dimensional and high data size

problems are addressed by deep learning models.[2]

Figure 15: Dimensionality per data types

D1.2 World-class infrastructures

The Google Collaboratory that was leveraged in training the modified ResNet model in Section C provides

GPU access for a duration of 12 hours and hence, serves the purposes for some academicians. However,

industrial and real-time use cases and applications needs to depend on a robust world-class infrastructure

as the hardware requirements are unique and huge as seen in Figure 16.[6]

Dell.com/certification 19

Figure 16: Hardware requirements for deep learning

From a business perspective one can leverage heterogenous hardware including compute, networking and

storage for running deep learning models. However, we find that the ready solutions for deep learning

from some vendors are performing well.

For example, the Dell EMC Ready Solution for deep learning delivered tremendous results on benchmark

ImageNet dataset as shown in Figure 17. These ready solutions include Dell EMC PowerEdge C4140 servers

with 4 Tesla V100 GPU’s. The solution also contains Dell EMC Isilon F800 storage hardware which comes

with 4 nodes. Thus, Dell EMC Ready Solutions for AI are the best fit for training large datasets on deep

learning models.[2]

2020 Dell Technologies Proven Professional Knowledge Sharing 20

Figure 17: Performance of Dell EMC Isilon Ready Solution on ResNet-50

D1.3 Conclusion

The tremendous opportunities that deep learning enables in various fields will continue to grow as more

breakthrough models are created. Once the models are created, various fine-tuning techniques discussed

in this article could help achieve expected performance and results.

The modified ResNet model developed in this article trained on benchmark dataset CIFAR-10 proves the

necessity of a world-class hardware for deep learning applications. The growing need of deep learning

applications will in turn create greater need for GPU- or FPGA-enabled hardware to meet performance and

capacity demands.

A comparison is drawn between the performance of separate hardware components and Dell EMC Ready

Solution. Designed to readily plug-in for training deep learning models in real-time, the scalable, robust and

easily configurable Dell EMC Ready Solution clearly demonstrates its ability perform better in meeting

business needs.

Dell.com/certification 21

References

 [1] “Canziani, Alfredo & Paszke, Adam & Culurciello, Eugenio. (2016). An Analysis of Deep Neural Network

Models for Practical Applications.”

[2] "Dell EMC Isilon Artificial Intelligence", “Delltechnologies.com, 2020. [Online]. Available:

https://www.delltechnologies.com/en-af/solutions/artificial-intelligence/ai-with-isilon/index.htm.

[Accessed: 27- Jan- 2020].”

[3] “He, Kaiming & Zhang, Xiangyu & Ren, Shaoqing & Sun, Jian. (2016). Identity Mappings in Deep Residual

Networks. 9908. 630-645. 10.1007/978-3-319-46493-0_38.”

[4] “Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional

neural networks. In Advances in neural information processing systems (pp. 1097-1105).”

[5] “LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11), 2278-2324.”

[6] "Ready Solutions for Artificial Intelligence (AI)", “Delltechnologies.com, 2020. [Online]. Available:

https://www.delltechnologies.com/en-in/solutions/data-analytics/machine-learning/ready-solutions-for-

ai.htm#scroll=off. [Accessed: 27- Jan- 2020].”

[7] “Russakovsky, Olga & Deng, J. & Su, Hao & Krause, J. & Satheesh, Sanjeev & Ma, S. & Huang, Z. &

Karpathy, A. & Khosla, A. & Bernstein, M. (2015). ImageNet Large Scale Visual Recognition Challenge. Int. J.

Comput. Vis. 115. 1-42.”

[8] “Simonyan, Karen & Zisserman, Andrew. (2014). Very Deep Convolutional Networks for Large-Scale

Image Recognition. arXiv 1409.1556.”

[9] “Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., &

Rabinovich, A. (2014). Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 1-9.”

2020 Dell Technologies Proven Professional Knowledge Sharing 22

APPENDIX

APPENDIX – Python code for Deep learning – modified ResNet Model for CIFAR-10

“import time

import numpy as np

import keras

import keras.utils

import matplotlib.pyplot as plt

% matplotlib inline

np.random.seed(2017)

from keras import backend as K

from keras.models import Sequential, Model

from keras.layers.convolutional import Convolution2D, MaxPooling2D, SeparableConv2D, Conv2D

from keras.layers import Activation, Flatten, Dense, Dropout, Input, concatenate, ZeroPadding2D, Dropout, AveragePooling2D

from keras.layers.normalization import BatchNormalization

from keras.layers import SpatialDropout2D, Add, GlobalAveragePooling2D

from keras.utils import np_utils

from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, EarlyStopping, LearningRateScheduler

from keras.preprocessing.image import ImageDataGenerator

from sklearn.metrics import log_loss, roc_auc_score, accuracy_score

from keras.losses import binary_crossentropy

from keras.metrics import binary_accuracy

from keras.callbacks import *

from keras.optimizers import Adam, SGD

from keras import regularizers

from keras.callbacks import Callback

import cv2

from keras.datasets import cifar10

import tflearn

from tflearn.data_augmentation import ImageAugmentation”

“# GRADED FUNCTION: identity_block

def identity_block(X, filters, stage, block):

 #weight_decay = 5e-4

 # defining name basis

 conv_name_base = 'res' + str(stage) + block + '_branch'

 bn_name_base = 'bn' + str(stage) + block + '_branch'

 # Retrieve Filters

 F1, F2 = filters

 # Save the input value. You'll need this later to add back to the main path.

 X_shortcut = X”

 “# First component of main path

 X = BatchNormalization(axis = 3, name = bn_name_base + '1a')(X)

Dell.com/certification 23

 X = Activation('relu')(X)

 #X = Conv2D(filters = F1, kernel_size = (3, 3), strides = (1,1), padding = 'same', kernel_regularizer=regularizers.l2(weight_decay),

name = conv_name_base + '2a')(X)

 X = Conv2D(filters = F1, kernel_size = (3, 3), strides = (1,1), padding = 'same', name = conv_name_base + '2a')(X)

 X=SpatialDropout2D(0.1)(X)

 # Second component of main path (≈3 lines)

 X = BatchNormalization(axis = 3, name = bn_name_base + '1b')(X)

 X = Activation('relu')(X)

 #X = Conv2D(filters = F2, kernel_size = (3, 3), strides = (1,1), padding = 'same', kernel_regularizer=regularizers.l2(weight_decay),

name = conv_name_base + '2b')(X)

 X = Conv2D(filters = F2, kernel_size = (3, 3), strides = (1,1), padding = 'same', name = conv_name_base + '2b')(X)

 X=SpatialDropout2D(0.1)(X)

 # Final step: Add shortcut value to main path, and pass it through a RELU activation (≈2 lines)

 X = Add()([X, X_shortcut])

 return X

GRADED FUNCTION: projection_block

def projection_block(X, filters, stage, block):

 weight_decay = 5e-4

 # defining name basis

 conv_name_base = 'res' + str(stage) + block + '_branch'

 bn_name_base = 'bn' + str(stage) + block + '_branch'

 # Retrieve Filters

 F1, F2 = filters

 # Save the input value. You'll need this later to add back to the main path.

 X_shortcut = X

 # First component of main path

 X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X)

 X = Activation('relu')(X)

 #X = Conv2D(filters = F1, kernel_size = (3, 3), strides = (2,2), padding = 'same', kernel_regularizer=regularizers.l2(weight_decay),

name = conv_name_base + '2a')(X)

 X = Conv2D(filters = F1, kernel_size = (3, 3), strides = (2,2), padding = 'same', name = conv_name_base + '2a')(X)

 X=SpatialDropout2D(0.1)(X)

 # Second component of main path (≈3 lines)

 X = BatchNormalization(axis = 3, name = bn_name_base + '2b')(X)

 X = Activation('relu')(X)

 #X = Conv2D(filters = F2, kernel_size = (3, 3), strides = (1,1), padding = 'same', kernel_regularizer=regularizers.l2(weight_decay),

name = conv_name_base + '2b')(X)

 X = Conv2D(filters = F2, kernel_size = (3, 3), strides = (1,1), padding = 'same', name = conv_name_base + '2b')(X)”

 “X=SpatialDropout2D(0.1)(X)

 # Third component outside main path

2020 Dell Technologies Proven Professional Knowledge Sharing 24

 X_shortcut = Conv2D(filters = F1, kernel_size = (1, 1), strides = (2,2), padding = 'same', name = conv_name_base +

'2c')(X_shortcut)

 # Final step: Add shortcut value to main path, and pass it through a RELU activation (≈2 lines)

 X = Add()([X, X_shortcut])

 return X

x0=Input(shape=(32, 32, 3))

x1=ZeroPadding2D((3,3))(x0)

x1 = Conv2D(32, (7, 7), strides = (1, 1), name = 'conv1',padding='same')(x1)

x1=BatchNormalization()(x1)

x1= Activation('relu')(x1)

x1 = MaxPooling2D((2, 2), strides=(1, 1), name = 'pooling1')(x1)

x2 = identity_block(x1, [32,32], stage=1, block='a')

x3 = identity_block(x2, [32,32], stage=1, block='b')

#x3=Conv2D(filters = 64, kernel_size = (1, 1))(x3)

x3 = projection_block(x3, [64,64], stage=2, block='a')

x4 = identity_block(x3, [64,64], stage=2, block='b')

#x4=Conv2D(filters = 32, kernel_size = (1, 1))(x4)

x4 = projection_block(x4, [128,128], stage=3, block='a')

x5 = identity_block(x4, [128,128], stage=3, block='b')

#x5=Conv2D(filters = 32, kernel_size = (1, 1))(x5)

x5 = projection_block(x5, [256,256], stage=4, block='a')

x6 = identity_block(x5, [256,256], stage=4, block='b')

#x6=Conv2D(64, (3, 3), activation='relu')(x6)

#x6=BatchNormalization()(x6)

#x6=Conv2D(10, (1, 1), padding="same",activation='relu')(x6)

#x6=MaxPooling2D((2, 2),padding="same")(x6)

x6 = AveragePooling2D(strides=(2,2))(x6)

x6=Conv2D(filters = 64, kernel_size = (1, 1), strides=(1,1),padding="same")(x6)

x6=BatchNormalization()(x6)

x6 = Activation('relu')(x6)

x6=Conv2D(64, (3, 3), padding="same")(x6)

x6=BatchNormalization()(x6)

x6 = Activation('relu')(x6)

x6=Conv2D(10, (1, 1), padding="same",activation='relu')(x6)

x6 = AveragePooling2D(strides=(2,2))(x6)

seq = Flatten()(x6)

predictions = Activation('softmax')(seq)

model = Model(inputs=x0, outputs=predictions, name='ResNet')

model.summary()”

“from IPython.display import SVG

Dell.com/certification 25

from keras.utils.vis_utils import model_to_dot

SVG(model_to_dot(model).create(prog='dot', format='svg'))

batch_size = 128

epochs=50

model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.3, momentum=0.9, nesterov=False), metrics=['accuracy'])

datagen_cut = ImageDataGenerator(zoom_range=0.0,horizontal_flip=True, preprocessing_function=get_random_eraser(p=0.5,

s_l=0.02, s_h=0.4, r_1=0.3, r_2=1/0.3, v_l=0, v_h=1, pixel_level=False))

sched = OneCycle(min_lr=0.07, max_lr=0.9, min_mtm = 0.75, max_mtm = 0.9, annealing_stage=0.08, annealing_rate=0.009,

 training_iterations=np.ceil(((X_train.shape[0]*epochs)/(batch_size))))

mcp_save = ModelCheckpoint('.mdl_wts.hdf5', save_best_only=True, monitor='val_acc', verbose=1)

train the model

start = time.time()

Train the model

model_info = model.fit_generator(datagen_cut.flow(X_train, Y_train, batch_size = 128), samples_per_epoch = Y_train.shape[0],

nb_epoch = 50, validation_data = (X_test, Y_test), callbacks=[sched,mcp_save])

end = time.time()

output:

Epoch 1/50

390/390 [==============================] - 95s 243ms/step - loss: 1.6571 - acc: 0.3909 - val_loss: 1.8933 - val_acc: 0.3944

Epoch 00001: val_acc improved from -inf to 0.39440, saving model to .mdl_wts.hdf5

Epoch 2/50

390/390 [==============================] - 91s 234ms/step - loss: 1.3039 - acc: 0.5268 - val_loss: 1.3534 - val_acc: 0.5242

Epoch 00002: val_acc improved from 0.39440 to 0.52420, saving model to .mdl_wts.hdf5

Epoch 3/50

390/390 [==============================] - 91s 233ms/step - loss: 1.1004 - acc: 0.6072 - val_loss: 1.2767 - val_acc: 0.5703

Epoch 00003: val_acc improved from 0.52420 to 0.57030, saving model to .mdl_wts.hdf5

............

Epoch 00048: val_acc improved from 0.87320 to 0.87780, saving model to .mdl_wts.hdf5

Epoch 49/50

390/390 [==============================] - 91s 233ms/step - loss: 0.1061 - acc: 0.9641 - val_loss: 0.4929 - val_acc: 0.8805

Epoch 00049: val_acc improved from 0.87780 to 0.88050, saving model to .mdl_wts.hdf5

Epoch 50/50

390/390 [==============================] - 91s 233ms/step - loss: 0.0975 - acc: 0.9671 - val_loss: 0.4907 - val_acc: 0.8819

Epoch 00050: val_acc improved from 0.88050 to 0.88190, saving model to .mdl_wts.hdf5”

2020 Dell Technologies Proven Professional Knowledge Sharing 26

Dell Technologies believes the information in this publication is accurate as of its publication date. The
information is subject to change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED “AS IS.” DELL TECHNOLOGIES MAKES NO
RESPRESENTATIONS OR WARRANTIES OF ANY KIND WITH RESPECT TO THE INFORMATION IN THIS
PUBLICATION, AND SPECIFICALLY DISCLAIMS IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE.

Use, copying and distribution of any Dell Technologies software described in this publication requires an
applicable software license.

Copyright © 2020 Dell Inc. or its subsidiaries. All Rights Reserved. Dell Technologies, Dell, EMC, Dell EMC
and other trademarks are trademarks of Dell Inc. or its subsidiaries. Other trademarks may be trademarks
of their respective owners.

	Fine Tuning Deep Neural Networks_cover
	Fine Tuning Deep Neural Networks_needs cover page

