

HEALTH CHECK AND CAPACITY REPORTING FOR HETEROGENEOUS SAN ENVIRONMENTS

Mumshad Mannambeth Delivery Specialist EMC Global Services Sampath Salem Advisory Solutions Architect EMC Global Services

Table of Contents

1.	Introduct	ion	5
2.	Archited	cture	7
3.	Health (Check Routine for Various Arrays	
	3.1 EM	IC Symmetrix Systems – DMX/VMAX	
	3.1.1	Check Array Environmental Information	
	3.1.2	Check director status	9
	3.1.3	Check Events for Fatal Errors	10
	3.1.4	Check for Failed Disks	11
	3.1.5	Check for Pool Capacity Utilization	12
	3.1.6	Check for Storage Group wise Allocated Capacity	12
;	3.2 EN	IC Unified Storage – Clariion/VNX Arrays	13
	3.2.1	Check Faults on the Array	13
	3.2.2	Check Environmental Information	13
	3.2.3	Check Backend Connectivity	14
	3.2.4	Check Cache Status	14
	3.2.5	Check Pool Utilization	15
(3.3 EM	IC Avamar	15
	3.3.1	Check status of the Nodes and Capacity Utilization	16
	3.3.2	Check the status of services	16
	3.3.3	Check the uptime of the grid	16
(3.4 Hita	achi HDS Arrays	17
	3.4.1	Check Free Space on Array Groups	17
	3.4.2	Check System Alerts	18
(3.5 IBN	/I XIV Arrays	
	3.5.1	Check ATS Configuration	18
	3.5.2	Check CF Status	20

	3.5.	3	Check for Failed System Components	20
	3.5.	4	Check the status of the Maintenance Module	20
	3.5.	5	Check the modules internal temperature	20
	3.5.	6	Check Filesystems Health State	21
	3.5.	7	Check status of FANs in the System	21
3	8.6	ΗP	XP Arrays	22
	3.6.	1	Check Array Status	22
	3.6.	2	Check Array Control Processor and Disk Adapter Status	22
	3.6.	3	Check Channel Host Interface Processor and Channel Adpater Status	23
	3.6.	4	Check Channel Processor Status	23
	3.6.	5	Check Cache Status	24
	3.6.	6	Check Backend Disk Status	24
	3.6.	7	Check Shared Memory Details	25
	3.6.	8	Check Capacity Utlilzation	25
3	8.7	Bro	cade Switches	25
	3.7.	1	Check for Errors	25
	3.7.	2	Check Hardware Components	26
	3.7.	3	Check Port Utilization	27
3	8.8	Cise	co Switches	28
	3.8.	1	Check basic hardware and environmental information	28
	3.8.	2	Check Port Usage	29
4.	Aut	omat	ting Health Check	30
4	.1	Aut	omation in Linux Environment	30
4	.2	Aut	omation in Windows Environment	30
4	.3	Dat	a Collection from a Cisco Switch	30
4	.4	Dat	a Collection from Symmetrix Arrays	32
5.	Gat	herir	ng the Data	35

5.1	Data Collection Approaches	35
5.2	Advantages of using PowerShell over Batch Script	35
5.3	Email results using PowerShell	36
5.4	Upload results to FTP Location using PowerShell	37
5.5	Set-up Scheduled Tasks to automatically run the scripts	37
5.5	.1 Windows	
5.5	.2 Linux	
6. Pro	cessing and Generating Report	
6.1	VBA Function to read information from Outlook Emails	
6.2	VBA Function to read data from File	40
6.3	VBA Function to analyze Symmetrix Data	40
6.4	Symmetrix Health Check Report	41
6.5	Symmetrix Capacity Report	41
6.6	Symmetrix Capacity report per Storage Group	42
6.7	VNX Health Check Report	42
6.8	VNX Capacity Report	43
6.9	XIV Health Check Report	43
6.10	Switch Health Check Report	44
6.11	Switch Capacity Report	44
6.12	Consolidated Health Check Report Graph of SAN Environment	45
7. Adv	vantages	46
8. Co	nclusions	48
Append	ix	49
Referer	ICES	50
Bibliogr	aphy	51
Disclaime necessar	er: The views, processes, or methodologies published in this article are those of the aut ily reflect EMC Corporation's views, processes, or methodologies.	hors. They do not

1. Introduction

Large service delivery accounts often find it difficult to perform health checks and monitor capacity on hundreds of arrays and switches spread across different environments, in various locations, across the globe. These may be Cloud delivery accounts supporting multiple SAN environments, either dedicated to a customer or shared between multiple customers; or multiple SAN environments resulting from a merger or acquisition. To guarantee Service Level Agreement (SLAs), a health check report is prepared several times a day, so that the arrays could be monitored closely and to ensure that all failures are handled appropriately. This is a time-consuming, tedious task that requires the effort of multiple engineers dedicated for this purpose. The complexity increases as the fabrics may be spread across different environments and locations. Moreover, due to the heterogeneity of the arrays and switches, a single tool may not serve the purpose of monitoring the entire environment.

While the EMC-dominated fabrics use EMC ControlCenter[®] (ECC) for monitoring, other fabrics are monitored using other vendor tools such as HP Service Manager (HPSM) or IBM monitoring tools. While the Cisco-dominated fabrics are monitored using Fabric Manager, the Brocade fabrics are monitored using Connectrix Manager or Brocade Web Tools. These varieties of tools pose a challenge for the administrators to prepare a collaborated report of all the assets in their environment. Figure 1 shows an example of one such typical environment.

This article describes the methodologies used in implementing a time-saving, automated, health check and capacity report generation process of large numbers of different types of arrays and switches in a shared cloud environment.

Figure 1: Typical SAN Enironment

2. Architecture

The reporting procedure utilizes a number of scripts developed in OS-specific shells and presentation tools, like Excel, to prepare reports in matter of minutes. The process eliminates the need for users to log in to each management workstation to inspect the array. Instead, health check scripts are run on the workstations using scheduled tasks and reports are automatically emailed to the administrators group. Different types of scripts are used for different types of arrays and all required information is collated into a single email. Once all reports from various environments and arrays are received at the administrators email, an Excel VBA solution can be used to read the emails from Outlook and turn it into useful reports. Figure 2 portrays the block diagram of this architecture.

Figure 2: Architecture – Block Diagram

Next, we discuss health check routines for different types of arrays, and how these tasks can be automated using various tools.

3. Health Check Routine for Various Arrays

This section discusses the basic health check routines for various arrays. Once the health check routines are outlined, we discuss scripts to generate data automatically. A brief discussion of health check routines for heterogeneous arrays follows:

3.1 EMC Symmetrix Systems – DMX/VMAX

Health check for EMC Symmetrix[®] systems consists of checking the basic hardware status, environmental details, event logs and capacity consumption. This can be accomplished either through Unisphere[®] or SMC, or EMC Solutions Enabler (EMC SE). This article will discuss the health check routine using EMC SE, so that it can later be used for scripting.

3.1.1 Check Array Environmental Information

The first step is to check the basic environmental details of the array such as the status of the power supplies, enclosures, link control cards, FANs, management modules, and directors.

Command:

```
Symcfg -sid <symid> list -env_data
```

:\Users\Administrator>symcfg -sid 💶 li	st -e	nv_data
Symmetrix ID : : Timestamp of Status Data : 12/28/2013 03	:50:0	5
System Bay		
Bay Name Number of Standby Power Supplies Number of Drive Enclosures Number of Enclosure Slots Number of MIBE Enclosures	:	SB-1 8 0 4 4
Summary Status of Contained Modules All Standby Power Supplies All Enclosures All Link Control Cards All Power Supplies All Enclosure Slots All Power Supplies All Fans All Management Modules All IO Module Carriers All Directors All MIBE Enclosures All MIBE Enclosures All Power Supplies		Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal
Drive Bays		
Bay Name Number of Standby Power Supplies Number of Drive Enclosures	:	DB-1A 8 16
Summary Status of Contained Modules All Enclosures All Link Control Cards All Power Supplies All Standby Power Supplies	:	Normal Normal Normal Normal
Bay Name Number of Standby Power Supplies Number of Drive Enclosures		DB-18 8 16
Summary Status of Contained Modules All Enclosures	:	Normal

Figure 3: Screenshot – Environmental Information

3.1.2 Check director status

Next, check the status of all front-end, back-end and SRDF directors on the array.

Command:

symcfg -sid <symid> list -dir all

C:\Users\A	dministrat	or>symcfg	-sid	list -dir	'all	
Symmetrix	ID:	(L	ocal)			
	S Y M M E	${\tt T R I \times}$	DI	RECTORS	;	
Ident	Symbolic	Numeric	Slot	Туре	Status	
DF-5A	05A	5	5	DISK	Online	
DF-6A	06A	6	6	DISK	Online	
DF-7A	07A 700			DISK	online	
	08A	8	ŏ	DISK	Online	
DF-9A	109A	10	10	DISK	Online	
DE-10A	. IUA 11A	11	11	DISK	Online	
DE-12A	124	12	12		Online	
DE-58	05B	21	5	DISK	Online	
DE-6B	06B	22	ด์	DISK	Online	
DF-7B	07B	23	7	DISK	Online	
DF-8B	08B	24	8	DISK	Online	
DF-9B	098	25	9	DISK	Online	
DF-108	108	26	10	DISK	Online	
DF-118	11B	27	11	DISK	Online	
DF-128	128	28	12	DISK	Online	
DF-5C	05C	37	5	DISK	Online	
DF-6C	060	38	6	DISK	Online	
DF-/C	070	39		DISK	Online	
DF-8C	080	40	× ×	DISK	Online	
DF-9C	100	41	10	DISK	Online	
DF-10C	110	42	11		Online	
DE-120	120	40	12		Online	
DF-5D	050	53	5	DISK	Online	
DF-6D	06D	54	6	DISK	Online	
DF-7D	07D	55	7	DISK	Online	
DF-8D	08D	56	8	DISK	Online	
DF-9D	09D	57	9	DISK	Online	
DF-10D	10D	58	10	DISK	Online	
DF-11D	11D	59	11	DISK	Online	
DF-12D	12D	60	12	DISK	Online	
FA-5E	05E	69	5	FibreChannel	Online	
FA-6E	06E	70	6	FibreChannel	online	
	U/E	71	6	KDF-BI-DIK	Omline	
FA-8E	DOF	72	0	FibreChannel	Online	
PE-105	105	74	10	PDE_BT_DTP	Online	
FA-11E	11E	75	11	FibreChannel	Online	

Figure 4: Screenshot – Director Status

3.1.3 Check Events for Fatal Errors

Now, check the event logs for fatal errors. Examples of errors could be hardware failures, pool full conditions, CACA errors, etc.

Command:

symevent -sid <symid> list -error -fatal

C:∖U	Jsers∖A	dminist	rator>s)	∕mevent	-sid	list -er	rror -fatal	
Symn Time	netrix 2011e	ID: Eas	tern Sta	andard 1	Time			
Dete	ection	time		Dir	Src	Category	Severity	Error Num
Sat	Aug 24 A Symm	20:53: etrix D	10 2013 irector	DF-11C is not	Symm respo	Director Diding	Fatal	0×0040
Sat	Aug 24 A Symm	20:53: etrix D	33 2013 isk Dire	FA-9F ector is	Symm ; not	Director responding	Fatal	0×0009
Sat	Aug 24 A Symm	20:53: etrix D	33 2013 irector	DF-12D is not	Symm respo	Director	Fatal	0×0040
Sat	Aug 24 A Symm	20:53: etrix D	33 2013 isk Dire	FA-11F ector is	Symm ; not	Director responding	Fatal	0×0009
Sat	Aug 24 A Symm	21:38: etrix D	00 2013 isk Dire	FA-9F ector is	Symm ; not	Director responding	Fatal	0×0009
Sat	Aug 24 A Symm	21:38: etrix D	00 2013 irector	DF-5D is not	Symm respo	Director	Fatal	0×0040
Sat	Aug 24 A Symm	21:38: etrix D	00 2013 isk Dire	FA-11F ector is	Symm ; not	Director responding	Fatal	0×0009
Sat	Aug 24 A Symm	21:38: etrix D	01 2013 isk Dire	FA-11E ector is	Symm ; not	Director responding	Fatal	0×0009
Sat	Aug 24 A Symm	21:38: etrix D	01 2013 isk Dire	FA-12F ector is	Symm ; not	Director responding	Fatal	0×0009
Sat	Aug 24 A Symm	21:38: etrix D	50 2013 isk Dire	FA-11E ector is	Symm ; not	Director responding	Fatal	0×0009
Dete	ection	time		Dir	Src	Category	Severity	Error Num
Sat	Aug 24 A Symm	21:38: etrix D	50 2013 irector	DF-5C is not	Symm respo	Director	Fatal	0×0040
Sat	Aug 24 A Symm	21:38: etrix D	50 2013 isk Dire	FA-9F ector is	Symm ; not	Director responding	Fatal	0×0009
Sat	Aug 24 A Symm	21:38: etrix D	50 2013 isk Dire	FA-11F ector is	Symm ; not	Director responding	Fatal	0×0009
Sat	Aua 24	21:38:	51 2013	FA-12F	Symm	Director	Fatal	0×0009

Figure 5: Screenshot – Event Logs

3.1.4 Check for Failed Disks

Next, check for failed disks on the array. Although a dial home is automatically raised for the failed drives and an EMC CE is automatically engaged, it is a good practice to keep a check on the errors on the Symmetrix.

Command:

```
symdisk -sid <symevent> list -failed
```

Symmet Disks	trix II Select) ted			-	65				
Ident	Symb	Int	TID	Vendor		Туре	 Hypr	Total	Capacity(MB) Free	Actual
DF-1A DF-2A DF-2A DF-5A DF-5A	01A 02A 02A 05A 05A	CCCCA	E 7 1D 4 7	SEAGATE SEAGATE SEAGATE SEAGATE SEAGATE SEAGATE		T146155 C146X15 T300155 T300155 T300155	7 7 0 0 0	140014 140014 0 0 0	78769 78769 0 0 0	140014 140014 286102 286102 286102 286102

Figure 6: Screenshot – Failed Disks

3.1.5 Check for Pool Capacity Utilization

Next, we check the capacity utilization of the thin pools. This is very important to prevent a pool full condition which may result in I/O errors on the hosts if sufficient space is not available in the pool.

Command:

Symcfg -sid <symid> list -thin -pools

C:\Users\Adm	inistra	tor>symcfg -si	dlist -	thin -pool								
Symmetry TD. 20035												
SYMMETRIX POOLS												
				 F								
POOL	PTECC	Dev	Usable	Free	usea Turrelua	FULL	Comp					
Name 	PIECSE	Contig	Iracks	Iracks	Iracks	(%)	(%)					
TF62_TH3CF	TF9DEI	2-Way Mir	600960	600960	0	0	0					
R1_TP1	TFFDEI	2-Way Min	121176	120300	876	0	0					
TF62_TH3CS	TS9DEI	RAID-5(7+1)	450720	449376	1344	0	0					
nkdpool	TFFDEI	2-Way Mir 🌷	262500	170712	91788	34	0					
kmr'	TDD-	Unknown	0	0	0	0	0					
R5_TP1	TFFDEI	RAID-5(3+1)	3177000	3027048	149952	4	0					
hisham1	TFFDEI	2-Way Min	12000	12000	0	0	0					
varma_thin	TSFDEI	RAID-5(3+1)	163848	163824	24	0	0					
newpool_p	TSFDEI	RAID-5(3+1)	163848	163764	84	0	0					
vp_snap1	TSFDEI	2-Way Mir	49170	32718	16452	33	0					
vp_snap2	TSFDEI	2-Way Min	49170	4458	44712	90	0					
SATA_TP1	TSFDEI	RAID-6(6+2)	213048	181404	31644	14	0					
VP_SATA	TDD-	Unknown	0	0	0	0	0					
my_new	TSFDEI	RAID-5(3+1)	2491584	2069916	421668	16	0					
testing	TSFDEI	2-Way Min	1440600	1439424	1176	0	0					
CG61_TĤ3CF	TF9DEI	2-Way Min	150192	150192	0	0	0					
CG61_TH3CS	TS9DEI	RAID-5(7+1)	150192	149664	528	0	0					
SN62_TH3CF	TF9DEI	2-Way Mir	450720	450720	0	0	0					
SN62_TH3CS	TS9DEI	RAID-5(7+1)	450720	450048	672	0	0					
sata_pool_yh	TSFDEI	2-Way Mir	75000	74952	48	0	0					
MAHMOUD	TSFDEI	2-Way Mir	24360	24348	12	0	0					

Figure 7: Screenshot – Pool Utilization

3.1.6 Check for Storage Group wise Allocated Capacity

Some customers may require the capacity report to reflect a host-based capacity utilization. For this, use the command below.

Command:

symaccess -sid <symid> list devinfo

3.2 EMC Unified Storage – CLARiiON/VNX Arrays

Health check routine for Clariion[®]/VNX[®] arrays is often performed through the Unisphere GUI. In this article, we discuss a CLI-oriented method. Using SecureCLI (naviseccli), we check the status of basic CLARiiON hardware, event logs, and capacity utilization. Secure CLI is a comprehensive Navisphere CLI solution that provides one application and one security model for all CLI commands. Secure CLI provides role-based authentication, audit trails of CLI events, and SSL-based data encryption. You do not need to install a JRE, to run Secure CLI^[1]. Secure CLI commands run in a command window. Each command consists of the naviseccli command (and options) together with another subcommand (and its options). Please refer to *VNX for Block Command Line Interface CLI Reference 1.0* for more information on setting up authentication and security details for SecureCLI.

3.2.1 Check Faults on the Array

First, check for the faults on the array using the faults list command.

Command:

naviseccli -h <SP ip address> faults -list

Figure 8: Screenshot – CLARiiON Faults List

3.2.2 Check Environmental Information

Next, check the environmental details of the array such as inlet air temperature and input power status and make sure they are all in a valid state.

Command:

naviseccli -h <SP ip address> environment -list -all

C:\Users\mannam4>naviseccli -Scope -list -all	0 -user	-password	i −h i	en∪ironment
Array				
Input Power Status: Valid Present(watts): 833 Rolling Average(watts): 833				
DPE8 Bus 0 Enclosure 0				
Input Power Status: Ualid Present(watts): 436 Rolling Average(watts): 435				
Air Inlet Temperature Status: Valid Present(degree C): 36 Rolling Average(degree C): 36				
DAE6S Bus 1 Enclosure 0				

3.2.3 Check Backend Connectivity

Check the status of the backend connectivity cards.

Command:

```
naviseccli -h <SP ip address> backendbus -get -all
```

C∶∖ get	Users\mannam -all	4>naviseccli	-Scope 0 -user	 password	h	 backendbus -
Bus	0					
Cur Ava	rent Speed: (ilable Speed: 3(6)	6Gbps. s: Gbps. Gbps.				
SPA SPB	SFP State: 1 SFP State: 1	N/A N/A				
I/O Phy	Module Slot sical Port II	: Onboard D: O				
SPA SPB	Connector S Connector S	tate: Mismato tate: Mismato	ched ched			

3.2.4 Check Cache Status

Check the status of the cache cards on the array.

Command:

naviseccli -h <SP ip address> cachecard -list

```
naviseccli -h ss1_spa cachecard -list
Total Memory: 512MB
Hardware State: Ok
```

3.2.5 Check Pool Utilization

Check the storage pool capacity utilization. This is very important to prevent a pool full condition which may result in I/O errors on the hosts if sufficient space is not available in the pool.

Command:

naviseccli -h <SP ip address> storagepool -list

C:\Users\mannam4>naviseccli -Scope 0 -user	-password	-h	storagepool
-list			2 1
Pool Name: Pool 1			
Pool ID: 1			
Raid Type: r_10			
Percent Full Threshold: 70			
Description:			
Disk Type: SAS			
State: Ready			
Status: OK(0x0)			
Current Operation: None			
Current Operation State: N/A			
Current Operation Status: N/A			
Current Operation Percent Completed: 0			
Raw Capacity (Blocks): 2251537208			
Raw Capacity (GBs): 1073.617			
User Capacity (Blocks): 1109458944			
User Capacity (GBs): 529.031			
Consumed Capacity (Blocks): 445464576			
Consumed Capacity (GBs): 212.414			
Available Capacity (Blocks): 663994368			
Available Capacity (GBs): 316.617			
Percent Full: 40.152			
Total Subscribed Capacity (Blocks): 451768320			
Total Subscribed Capacity (GBs): 215.420			
Percent Subscribed: 40.720			
Oversubscribed by (Blocks): 0			
Oversubscribed bu (GBs): 0.000			

Figure 11: Screenshot – Storage Pool Utilization

3.3 EMC Avamar

Health check on an EMC Avamar[®] Grid is performed using a number of CLI commands available via the Avamar SSH terminal interface. After initiating an SSH to the Avamar terminal, execute the following commands:

3.3.1 Check status of the Nodes and Capacity Utilization

The status.dpn commands list the status of all the nodes in the Avamar Grid along with their capacity utilization percentage.

Command:

status.dpn

root@avmgrid:~/#: status.dpn										
Node	IP Address	State	Disk	Suspend	Load	UsedMB	%Full			
0.3	192.168.255.5	ONLINE	0	FALSE	4.03	32835200	23.50%			
0.2	192.168.255.4	ONLINE	0	FALSE	4.14	32836936	23.50%			
0.1	192.168.255.3	ONLINE	1	FALSE	4.06	32837892	23.40%			
0	192.168.255.2	ONLINE	1	FALSE	4.3	32835760	23.50%			
All repo	All reported states=(ONLINE), runlevels=(fullaccess), modes=(m000+0000+0000									
System-	Status: ok									

Figure 12: Screenshot – Avamar Status.dpn

3.3.2 Check the status of services

Next, check the status of different services, such as gsan, mcs, ems, backup scheduler, dtlt, axionfs, and maintenance windows scheduler.

Command:

dpnctl status

root@avmgrid:~/#:dpnctl status								
dpnctl	Туре	Component	Status					
dpnctl	INFO	gsan status	degraded					
dpnctl	INFO	MCS status	up.					
dpnctl	INFO	EMS status	up.					
dpnctl	INFO	Backup scheduler status	up.					
dpnctl	INFO	dtlt status	up.					
dpnctl	INFO	axionfs status	up.					
dpnctl	INFO	Maintenance windows scheduler status	enabled.					

Figure 13: Screenshot – Avamar Services Status

3.3.3 Check the uptime of the grid

Check the uptime of the grid to ensure no unexpected reboots have occurred.

Command:

uptime

root@avmgrid:~/#:uptime 7:17am up 589 days 20:40, 2 users, load average: 0.14, 0.16, 0.17

Figure 14: Screenshot – Avamar Uptime

3.4 Hitachi HDS Arrays

Most storage administrators operating Hitachi HDS arrays may be familiar with the Hitachi Device Manager or Storage Navigator consoles. Here, we discuss performing health check using Device Manager HiCommand CLI.

The Device Manager CLI provides a command line from which you can use Hitachi Command Suite Software to perform storage system operations and to manage storage resources. A request is sent to the storage system by submitting an entered command to the Device Manager server.

The Device Manager CLI enables you to create a script that runs several commands in order, and perform batch operation for the Device Manager server. Therefore, using the Device Manager CLI allows efficient operation by the system administrator when setting large volumes of predetermined content, such as when making initial settings for the storage system^[2]. For more information on setting up HiCommand CLI, please refer to <u>Hitachi Command Suite</u> <u>Software CLI Reference Guide</u>.

3.4.1 Check Free Space on Array Groups

Check the capacity utilization on array groups.

Command:

HiCommandCLI GetStorageArray subtarget=FreeSpace model=HDS9980V serialnum=10001

HiCommandCLI GetStorageArray subtarget=FreeSpace model=HDS9980V serialnum=10001 List of 1 ArrayGroup elements: An instance of ArrayGroup objectID=ARRAYGROUP.HDS9980U.10001.1.16 chassis=1 number=16 displayName=1-2-1 raidType=RAID5(3D+1P) emulation=OPEN-3 diskType=DKR2D-J072FC disk\$ize=72 diskSizeInKB=75,497,472 formFactor=-1 controllerID=1 totalCapacity=211,531,680 allocatedCapacity=134,588,160 freeCapacity=76,943,520 hiHsmCapacity=0 onDemandCapacity=0 totalFreeSpace=1,492,992 largestFreeSpace=1,492,992

Figure 15: Screenshot – Hitachi FreeSpace

3.4.2 Check System Alerts

Check system generated alerts for any hardware failures or warnings as shown in Figure 16

Command:

HiCommandCLI GetAlerts

3.5 IBM XIV Arrays

The IBM XIV Storage System command-line interface (XCLI) provides a mechanism for issuing commands to manage and maintain the XIV systems. XCLI commands are entered on an XCLI client system (or XCLI client) supplied by the customer^[3].

3.5.1 Check ATS Configuration

Check the status of the ATS (Automatic Transfer Switch) configuration. ATS switches between line cords to allow redundancy of external power.

```
HiCommandCLI GetAlerts
RESPONSE:
An instance of Alerts
Contains 2Alert instances:
 An instance of Alert
 number=2
 type=Server
 source=ARRAY.HDS9970U.35001
 severity=3
 component=DKU drive
 description=Serious error detected on DKU drive.
 actionToTake=Contact Customer Support.
 data=Component has stopped.
 timeOfAlert=2003/01/06 20:13:56
 An instance of Alert
 number=1
 type=Server
 source=ARRAY.HDS9970U.35001
 severity=4
 component=DKC processor
 description=Moderate error detected on DKC processor.
 actionToTake=Contact Customer Support.
 data=Component does not function fully.
 timeOfAlert=2003/01/06 20:13:51
```

Figure 16: Screenshot – Hitachi Check Alerts

Command:

ats_list ats

Example:

ats_list ats

Output:

Component ID	Status	Currently	Functioning	Mode1	L1 In	nput OK	L2	Input	ОК
1:ATS:1	ОК	yes		ATS-60A	no		yes		
Cont.:									
Outlet 1 State	Outlet	2 State	Outlet 3 State	e Firmwa	re Ver	rsion			
J2	J2		J2	4					
Cont.:									
3-Phase Dual Active									
no no									

Figure 17: Screenshot – XIV ATS Configuration

3.5.2 Check CF Status

Check the status of the Compact Flash (CF) cards on the array.

Command:

cf_list -f all

Example:

cf_list -f all

Output:

Component ID	Status	Currently Functioning	Hardware Status	Serial	Part #
1.05.10.1	04		0V	0 50112445	TRANSOFND 20070410
1:0F:10:1	UK	yes	UK	0_521134A5	TRANSCEND_200/0418
1:CF:11:1	OK	yes	OK	0_5211349C	TRANSCEND_20070418
1:CF:12:1	OK	yes	OK	0_521133F1	TRANSCEND_20070418
1:CF:13:1	OK	yes	OK	20080604_00003C44	TRANSCEND_20070418
1:CF:14:1	OK	yes	OK	0_52113389	TRANSCEND_20070418
1:CF:15:1	OK	yes	OK	0_521134AE	TRANSCEND_20070418
1:CF:1:1	OK	yes	OK	0 5211347A	TRANSCEND 20070418
1:CF:2:1	OK	yes	OK	0_521133C0	TRANSCEND_20070418
1:CF:3:1	OK	yes	OK	0_521133B0	TRANSCEND_20070418
1:CF:4:1	OK	yes	OK	0_52113568	TRANSCEND_20070418
1:CF:5:1	OK	yes	OK	0 5211357D	TRANSCEND 20070418
1:CF:6:1	OK	yes	OK	0_5211330F	TRANSCEND_20070418
1:CF:7:1	OK	yes	OK	0_521133D6	TRANSCEND_20070418
1:CF:8:1	OK	yes	OK	0_52113C99	TRANSCEND_20070418
1:CF:9:1	OK	yes	OK	0_5211344C	TRANSCEND_20070418

Figure 18: Screenshot – XIV Compact Flash Status

3.5.3 Check for Failed System Components

List the failed system components.

Command:

component_list filter=FAILED|NOTOK

3.5.4 Check the status of the Maintenance Module

Check the status of the maintenance module as shown in Figure 19.

Command:

mm_list -f all

3.5.5 Check the modules internal temperature

Check the status of the internal temperature of modules as shown in Figure 20

Command:

module_temperature_list -f all

Example: mm_list -f all Output: Component ID Status Currently Functioning Enabled Version I:MaintenanceModule:1 OK yes yes MGMT-4.5 Temperature Serial Original Serial Part # Original Part Number 49 0123456789 0123456789 0123456789 0123456789

	Total Men	mory	Free Memory	Free disk (/)	Free disk (/var)	Link#1
l	932172		602096	39031456	201873624	yes
l						
l	Link#2	Requir	res Service			
l	yes	None				

Figure 19: Screenshot – XIV Check Maintenance Module

Example:

nodule_temperature_list -f all)
--------------------------------	---

Output:

(Module	Ambient	Midplane	EM Card	Fan Controller	CPU 1	DIMM 2	DIMM 4	DIMM 6	PCIe	InfiniBand HCA	Fibre Channel
	1:Module:13 1:Module:14 1:Module:2 1:Module:5 1:Module:8	24 24 21 22 22	23 23 23 23 23 23 23	28 28 27 27 27 27	19 30 33 31 24	34 38 33 33 36	32 32 31 31 31	31 32 31 31 31 31	31 31 31 31 31 30	34 35 34 35 35	77 82 77 83 79	<n a=""> <n a=""> <n a=""> 44 49</n></n></n>

Figure 20: Screenshot – XIV Check Module Templarature

3.5.6 Check Filesystems Health State

fs_check

3.5.7 Check status of FANs in the System

fan_list

Example:	Example:							
,	xcli -u -c Nextral fan_list							
Output:								
Component ID	Status	Currently Functioning						
1:Fan:1:1	OK	yes						
1:Fan:1:10	OK	yes						
1:Fan:1:2	OK	yes						
1:Fan:1:3	OK	yes						
1:Fan:1:4	OK	yes						
1:Fan:1:5	OK	yes						
1:Fan:1:6	OK	yes						
1:Fan:1:7	OK	yes						
1:Fan:1:8	OK	yes						
1:Fan:1:9	ОК	yes						

Figure 21: Screenshot – XiV Check Fan Status

3.6 HP XP Arrays

The Command View XP Command Line Interface (CLI) is a text-based interface used to manage and retrieve information about XP disk arrays. Use the CLI if you prefer a text-based interface to the graphical user interface (GUI) or when it is more efficient to run scripts or batch files to manage your XP disk arrays^[4]. For more information on setting up XP Command Line Interface, please refer to <u>HP StorageWorks Command View XP</u> <u>Command Line Interface (CLI) reference guide</u>.

3.6.1 Check Array Status

Check array locked status.

Command:

list array_status

Example:

Lock_State Lock_Status Refresh_State Refresh_Status Get_State 10033 UNLOCKED OK IDLE OK COMPLETE OK 20074 LOCKED OK IDLE OK OLD_DATA OK

3.6.2 Check Array Control Processor and Disk Adapter Status

Check the Array Control Processor (ACP) and Disk Adapter (DKA) status.

Command:

list acp_status
list dka_status

Example:

DKA# Name Status
1 1 DKA-1B Normal
1 2 DKA-1C Service
1 3 DKA-1D Acute
1 4 DKA-1E Serious

3.6.3 Check Channel Host Interface Processor and Channel Adpater Status

Check the status of Channel Host Interface Processor (CHIP) and channel adapters (CHA)

Command:

list chip_status list cha_status

Example:

CHA# Name Status 1 1 CHA-1P Normal 1 2 CHA-1Q Service 1 3 CHA-1S Serious Cluster# CHA# Name Status 1 6 CHA-1B Normal 2 5 MIX-2F Normal 2 6 CHA-2E Normal

3.6.4 Check Channel Processor Status

Check the status of Channel Processors (CHP)

Command:

list chp_status

Example:

Cluster# CHA# CHP# Name Status 1 1 1 CHP00-1P Normal 1 2 2 CHP00-1Q Service 1 3 3 CHP00-1R Acute 1 4 4 CHP00-1S Serious

3.6.5 Check Cache Status

Command:

list cm_status
list csw_status

Example:

Cluster# Cache# Name Status 1 0 Cache-1T Normal Cluster# CSW# Name Status 1 0 CSW-1N Normal 1 0 CSW-1P Service

3.6.6 Check Backend Disk Status

Command:

list dkc_status
list dkp_status
list dku_status

Example:

Component, Status Processor, Normal CSW, Serious Cache, Moderate Shared Memory, Normal Power Supply, Normal Battery, Normal Fan, Normal Environment, Serious Cluster# DKA# DKP# Name Status 1 1 1 DKP80-1B Normal 1 2 2 DKP80-1C Service 1 3 3 DKP80-1D Acute 1 4 4 DKP80-1E Serious Component, Status Power Supply, Normal Fan, Normal Environment, Serious Drive, Acute

3.6.7 Check Shared Memory Details

Command:

list sm_status

Example:

Cluster# CHA# Name Status 1 5 MIX-1A Normal 1 6 CHA-1B Normal 2 5 MIX-2F Normal 2 6 CHA-2E Normal

3.6.8 Check Capacity Utlilzation

The commands below help to check the capacity utilization in parity groups and pools.

Command:

list pg_freespace_info

3.7 Brocade Switches

On Brocade switches, health check and capacity reporting is performed by accessing the switch via the SSH terminal. Some of the commands that may be run to retrieve information are given below.

3.7.1 Check for Errors

Look for errors on the switch.

Command:

errshow -a

Example:

```
2010/08/25-10:10:41, [SEC-1203], 9036, CHASSIS, INFO, \
Spir_67, Login information : Login successful via \
TELNET/SSH/RSH. IP Addr: 10.106.7.62
[Type <CR> to continue, Q<CR> to stop:
2010/08/25-10:13:41, [ZONE-1022], 9037, CHASSIS, INFO, \
Spir_67, The effective configuration has changed to meh.
[Type <CR> to continue, Q<CR> to stop:
2010/08/25-11:35:04, [FABR-1001], 9041, CHASSIS, WARNING, \
Spir_67, port 0, incompatible Long distance mode.
[Type <CR> to continue, Q<CR> to stop:
2010/08/25-11:39:35, [LOG-1000], 9043, CHASSIS, INFO, \
```

Spir_67, Previous message repeated 1 time(s)
[Type <CR> to continue, Q<CR> to stop:

3.7.2 Check Hardware Components

Use the commands below to check the status of hardware components:

Command:

psshow

fanshow

chassisshow

slotshow

Example:

switch:admin> fanshow
Fan #1 is OK, speed is 2721 RPM
Fan #2 is OK, speed is 2657 RPM
Fan #3 is OK, speed is 2700 RPM

switch:admin> psshow
Power Supply #1 is OK
DELTA DPS-1001AB-1E 2300000601 S1 IXD0111000088
Power Supply #2 is faulty
DELTA DPS-1001AB-1E 2300000601 S1 IXD0111000162
Power Supply #3 is OK
DELTA DPS-1001AB-1E 2300000601 S1 IXD0111000120
Power Supply #4 is absent

```
switch:user> chassisshow
Chassis Family: DCX8510-8
Chassis Backplane Revision: 0
SW BLADE Slot: 1
Header Version: 2
Power Consume Factor: -180
Power Usage (Watts): -286
Factory Part Num: 60-1002144-02
Factory Serial Num: BQB0345F00G
Manufacture: Day: 9 Month: 11 Year: 2010
Update: Day: 19 Month: 2 Year: 2011
Time Alive: 41 days
Time Awake: 1 days
SW BLADE Slot: 2
Header Version: 2
Power Consume Factor: -180
Power Usage (Watts): -306
Factory Part Num: 60-1002144-02
Factory Serial Num: BOB0345F02R
Manufacture: Day: 21 Month: 11 Year: 2010
Update: Day: 19 Month: 2 Year: 2011
Time Alive: 41 days
```

```
Time Awake: 1 days

SW BLADE Slot: 3

Header Version: 2

Power Consume Factor: -180

Power Usage (Watts): -315

Factory Part Num: 60-1002144-02

Factory Serial Num: BQB0345F01N

Manufacture: Day: 16 Month: 11 Year: 2010

Update: Day: 19 Month: 2 Year: 2011

Time Alive: 39 days

Time Awake: 1 days

(output truncated)
```

switch:user> slotshow
Slot Blade Type ID Status
1 SW BLADE 97 ENABLED
2 SW BLADE 96 ENABLED
3 SW BLADE 96 ENABLED
4 SW BLADE 96 ENABLED
5 CORE BLADE 98 ENABLED
6 CP BLADE 50 ENABLED
7 CP BLADE 50 ENABLED
8 CORE BLADE 98 ENABLED
9 SW BLADE 125 ENABLED
10 SW BLADE 126 ENABLED
11 SW BLADE 37 ENABLED
12 SW BLADE 55 ENABLED

3.7.3 Check Port Utilization

Check the number of used and unused ports to generate capacity report for switches.

Command:

switchshow

Example:

```
switch:admin> switchshow
switchName: Spirit_125
switchType: 66.1
switchState: Online
switchMode: Access Gateway Mode
switchWwn: 10:00:00:05:1e:85:95:d0
switchBeacon: OFF
FC Router: OFF
FC Router BB Fabric ID: 1
Area Port Media Speed State Proto
_____
0 0 -- N8 No_Module FC
1 1 -- N8 No_Module FC
2 2 -- N8 No_Module FC
3 3 -- N8 No_Module FC
4 4 -- N8 No_Module FC
5 5 -- N8 No_Module FC
6 6 -- N8 No_Module FC
7 7 -- N8 No_Module FC
```

8 8 -- N8 No_Module FC
9 9 id N8 Online FC F-Port 10:00:00:05:1e:53:2c:54 0x690105 (AoQ)

3.8 Cisco Switches

Use the following commands to check the status of Cisco switches and to generate a capacity report.

3.8.1 Check basic hardware and environmental information

Use the below command to check basic hardware configuration.

Command:

show environment power show environment fan show environment temperature

Example:

MDS# show environment power

PS Model Power Power Status (Watts) (Amp @42V)

MDS# show environment fan

_____ Fan Model Hw Status _____ Chassis DS-9SLOT-FAN 1.2 ok PS-1 -- -- ok PS-2 -- -- ok MDS# show environment temperature _____ Module Sensor MajorThresh MinorThres CurTemp Status (Celsius) (Celsius) (Celsius) _____ 1 Outlet 75 60 37 ok 1 Intake 65 50 31 ok 2 Outlet 75 60 36 ok 2 Intake 65 50 30 ok . . .

3.8.2 Check Port Usage

Check port usage to generate capacity reports.

Command:

show interface brief

Example:

MDS# show flogi **database** INTERFACE VSAN FCID PORT NAME NODE NAME fcl/1 1 0x050001 50:06:04:8a:cc:c8:bd:a1 50:06:04:8a:cc:c8:bd:a1 fcl/3 1 0x050003 50:06:04:8a:cc:c8:bd:9e 50:06:04:8a:cc:c8:bd:9e fcl/13 1 0x0501ef 50:06:01:62:3c:e0:16:7c 50:06:01:60:bc:e0:16:7c

4. Automating Health Check

Now that we have described the procedures for health check and capacity calculation on different arrays, our next step is to simplify and automate these tasks. In this section, we look at different approaches toward automation in various environments.

4.1 Automation in Linux Environment

As it is a well-equipped scripting platform, automation in Linux environment is primarily implemented using the basic shell scripts. The commands required to perform health checks and capacity reporting (as discussed in Chapter 3) is combined into a shell script.

4.2 Automation in Windows Environment

In this article, we discuss scripts written in Windows, since most of our management servers are based on Windows. When it comes to Windows environment, we have multiple possibilities for automation starting with the basic DOS CMD Batch scripts to advanced PowerShell scripts. This article discusses automation using PowerShell Scripts as it has the following advantages.

Advantages of PowerShell:

- PowerShell is built on .Net Framework and hence has full access to all .Net classes, COM, and WMI
- PowerShell provides a hosting API with which the Windows PowerShell runtime can be embedded inside other applications
- PowerShell can be integrated with Microsoft Office components such as Excel, PowerPoint, and Outlook.

This section covers some scripts that can be used for data collection from arrays and switches.

4.3 Data Collection from a Cisco Switch

As discussed in section 3.8, we can connect to the SSH terminal of a Cisco switch to collect information necessary to generate a health check and capacity report. A basic batch and PowerShell script can help automate this task. These scripts require two input files.

 switch_info.txt – a file that contains information regarding the different switches, their IP addresses, and credentials.

ĺ	switch_info.txt - Notepad							
	File Edit Format View Help							
	Switch1 10.32.20.18 admin P@ss70585							
	Switch2 10.32.20.19 admin P@ss70585							
	Switch3 10.32.20.10 admin P@ss70585							
	Switch4 10.32.20.11 admin P@ss70585							
	Switch3 10.32.20.10 admin P@ss70585 Switch4 10.32.20.11 admin P@ss70585							

Figure 22: Input File – Switch_info

 switch_commands.txt – a file that contains the basic commands that must be executed once a SSH connection is established to the switch.

switch_commands.txt - Notepad	. 🗆 🗙
File Edit Format View Help	
term len 0 show environment power show environment fan show environment temperature show interface brief show interface description show hardware exit	•

Figure 23: Input File – Switch_commands.txt

The scripts utilize Plink to establish a SSH terminal to a switch. <u>Plink</u> is a CLI version of Putty which can be used to automatically log in (via ssh) to a switch and execute a set of commands.

The batch version of the script looks like this:

```
FOR /F "tokens=1,2,3,4 delims=/ " %%a IN (switch_info.txt) DO (
plink -ssh %%b -l %%c -pw %%d < switch_commands.txt > %%a.txt
)
```

This script connects to each switch and executes the commands listed in the switch_commands.txt file. The output is redirected to a file named after the switch. A PowerShell version of the same script can be found below. The entire script can be found on EMC One - <u>http://one.emc.com/clearspace/docs/DOC-89592</u>. The advantages of using PowerShell over batch script will be discussed in the section, Gathering the Data. The same procedure can be used to collect data from Brocade switches, VPLEX, and EMC Avamar products.

```
Switch_Status_Check.ps1* X
   ****
27
   # DEFINE FUNCTION - Process Switch
28
   29
30
31
   function Process_Switch($username, $password, $switchIp, $SwitchName){
32
33
       $output = Get-Content cisco_commands4.sh | ./plink.exe -pw $password $username@$switchIp -v
34
35
   }
36
   *******
37
38
   # MAIN Program
   ******
39
40
    Get-Content .\switch_info.txt | select-string -NotMatch "^#" | %{
$username = ($_ -split "\s+")[2]
$password = ($_ -split "\s+")[3]
$SwitchIp = ($_ -split "\s+")[1]
$SwitchName = ($_ -split "\s+")[0]
Process Switch Successed Society for itely.
41
42
43
44
45
    Process_Switch $username $password $SwitchIp $SwitchName
46
47
    3
```

Figure 24: Screenshot – PowerShell Script – Cisco Switch

The script results in multiple output files, one for each switch, which contains the output of the commands specified in input file switch_commands.txt.

Switch1.txt		12/29/2013 2:26 PM	Text Documen	t	21 KB		
Switch2.txt	🔲 S1	witch1.txt - Notepad					x
Switch3.txt	File	Edit Format View Help					
Switch4.txt	<pre>mds9513# mds9513# mds9513# show environment power Power Supply: Voltage: 42 Volts</pre>						
	PS	Model	Power (Watts)	Power (Amp)	Status		
	1 2	DS-CAC-6000W	2844.66 0.00	67.73 0.00	0k Fail/Shut		
	Mod	Model	Power Requested (Watts)	Power Requested (Amp)	Power Allocated (Watts)	Power Allocated (Amp)	
Date created: 12/29/2013 2:25	1 2 3 4 7 8	DS-X9032 DS-X9704 DS-X9124 DS-X9304-18K9 DS-X9530-SF2-K9 DS-X9530-SF2-K9	190.68 172.20 147.00 199.50 126.00 126.00	4.54 4.10 3.50 4.75 3.00 3.00	$\begin{array}{c} 0.00\\ 172.20\\ 147.00\\ 199.50\\ 126.00\\ 126.00 \end{array}$	0.00 4.10 3.50 4.75 3.00 3.00	

Figure 25: Screenshot – Script results

4.4 Data Collection from Symmetrix Arrays

Data collection from Symmetrix arrays can be automated by implementing scripts on the management host that hosts Solutions Enabler. Solutions Enabler commands may be put together into a batch script or PowerShell script to automatically collect information. Below we see one such PowerShell Script. The entire script can be found at this location on EMC One.

http://one.emc.com/clearspace/docs/DOC-89586

```
Symmetrix_Grabber.ps1 X
```

```
24
25
   function Initialize(){
   $symids = read-host "Enter Symmetrix ID for generating report. Or leave blank for all A
26
27
        if (($symids -eq "")-or ($symids -eq $null)){
    if ($dev_mode -eq "OFF"){
28
29
            symcfg list > $symcfg_list_file
30
31
            3
            $symids = Get-Content $symcfg_list_file | %{$_.trim()} | select-string "Local"
32
33
        }else{
           $symids = @($symids -split ",")
34
35
        }
36
37
        foreach ($symid in $symids){
38
            if($symid){
39
            if ($dev_mode -eq "OFF"){
                 $file_name = ($symid+"_data.txt")
40
                 Remove-Item $file_name -ErrorAction silentlyContinue
41
42
43
                 #Health Check Section
44
                 "Collecting Data for $symid"
                 "Environmental Data..
45
46
                 symcfg -sid $symid list -env_data >> $file_name
                 "Director Data.."
47
                 symcfg -sid $symid list -dir all >> $file_name
48
                 "Event Data..
49
                 symevent -sid $symid list -error -fatal >> $file_name
"Failed Disks Data.."
50
51
                 symdisk -sid $symid list -failed >> $file_name
52
53
54
55
                 #Capacity Section
                 "Disk Group Capacity Data.."
symdisk -sid $symid list -dskgrp_summary >> $file_name
                 "Thin Pool Capacity Data.."
56
57
58
                 symcfg -sid $symid list -thin -pools -mb -detail >> $file_name
                 symcfg -sid $symid list -thin -pools -mb -v -detail >> $file_name
59
60
61
```

Figure 26: PowerShell Script – Symmetrix Data Collection

This script results in multiple output files as shown in Figure 27, one for each Symmetrix array which contains information necessary to generate a health check and capacity report. In the Gathering the Data chapter, we discuss ways to gather this data and process it to generate meaningful reports.

000195700136_data.txt 000195700137_data.txt 000195700138_data.txt

______ 000195700139_data.txt

📄 output_symcfg_list.txt

12/29/2013 10:10 A			
//////////////////////////////////////			_ 🗆 🗵
File Edit Format View Help			
Symmetrix ID : 000195700139 Timestamp of Status Data : 12/29/2013 10	0:01:3	9	<u> </u>
Bay Name Number of Standby Power Supplies Number of Drive Enclosures Number of Enclosure Slots Number of MIBE Enclosures		SB-1 8 0 4 4	
Summary Status of Contained Modules All Standby Power Supplies All Enclosures All Link Control Cards All Power Supplies All Enclosure Slots All Power Supplies All Fans All Management Modules All IO Module Carriers All Directors		Norma] Norma] Norma] Norma] Norma] Norma] Norma] Norma]	

Figure 27: Screenshot – Chapter Symmetrix Reports

5. Gathering the Data

Once data is collected at individual management stations - which may be in different environments, different domains, different customer sites, different data centers or any location on the globe – we collate them to a single location to process and generate meaningful collaborated reports. In this Chapter we discuss various ways of collating this information and processing them.

5.1 Data Collection Approaches

Data may be gathered from various management hosts in three ways. Data may be sent to the administrators email ID through email, or output files may be redirected to a location on the common share via remote login. A third option is to automatically upload the files to a location on the FTP share so that the files may be available outside the organization's infrastructure. Graph in Figure 28 describes the three ways.

Figure 28: Data Collection Approaches

5.2 Advantages of using PowerShell over Batch Script

The advantage of using an enhanced scripting utility such as PowerShell is that it helps in implementing the above mentioned tasks.

- With PowerShell, we can easily send the results as an email using a local SMTP server
- The FTP Client module helps us to easily upload results to an FTP location
- PowerShell can also be integrated with API's of cloud service provides such as Amazon S3 or Google Drive to share the results via cloud

Each of these are described in detail below.

5.3 Email results using PowerShell

The built-in .Net classes in PowerShell helps to easily email results to administrators from any management station. Obviously, restrictions in the customer environment regarding emailing and SMTP issues must be taken care of first.

Pre-requisites:

- Contact network administrator must know if it is OK to automatically send email from the management servers to the destination email ID
- Get the SMTP Server details address is sufficient in most cases
- Ensure the server firewall permits PowerShell to send email

Script:

Below is the PowerShell script that performs this task.

5.4 Upload results to FTP Location using PowerShell

The PSFTP module helps us to easily connect to FTP location and upload or download files as necessary.

Pre-Requisites:

- Download PSFTP module from <u>Microsoft Technet Website</u>
- The server must have port open to connect to FTP site
- Firewall must allow PowerShell to connect to FTP site

Script:

Below is the PowerShell script that can upload results to a FTP location. This may be appended to the scripts that collect information from individual arrays:

```
# UPLOAD TO FTP
# Import PSFTP Module
Import-Module PSFTP
#Set FTP Target Upload Path
$url = "ftp://yKJiFAUoU:oJqJ6oqoB6@ftp.emc.com/"
#Set the location of the report file to be uploaded
$report = "c:\my report file.txt"
#Derive username and password from URL
    $pass = ((($url -split "//")[1] -split "@")[0] -split ":")[1]
    $$$ = ((($url -split '/')[1] -split "@')[0] -split : )[1]
$user = (($url -split "/")[1] -split ":")[0]
$$global:server = "ftp://" + (($url -split "/")[2] -split "@")[1]
$path = ($url -split "/",4)[3]
#Set Credentials and Initiate connection to FTP site
    $password = ConvertTo-SecureString $pass -AsPlainText -Force
    $username = $user
    $cred = New-Object System.Management.Automation.PSCredential $username, $password
    Set-FTPConnection -Credentials <a>server</a> -Server -Session MyTestSession -UseBinary -
UsePassive
#Upload files to FTP
```

Add-FTPItem -Session \$global:Session -Path \$path -LocalPath \$report

5.5 Set up Scheduled Tasks to automatically run the scripts

It is now time to set up and forget! Even though collecting information from individual SAN components has been automated, it is still a tedious task to run these scripts on 100s of management servers spread across the globe. Set up a task scheduler to automatically execute these scripts as per the customer requirement. Some customers may want a report weekly

while the others may need it on a monthly basis. Here are different ways to set up a scheduler in Windows and Linux Platforms.

5.5.1 Windows

Once we have deployed the script that would collect information from arrays and email the results to the administrators, we must set up a trigger for the script. The 'Task Scheduler' in Windows helps us achieve this. Open the task scheduler from Start-> All Programs -> Accessories -> System Tools -> Task Scheduler.

Once task scheduler is opened:

- 1. Select the wizard Create Task
- 2. Give the task a meaningful name
- 3. Go to Triggers tab and select the interval to run the task Daily, Weekly, Monthly
- 4. Go to Actions tab and select the script to run

5.5.2 Linux

In Linux, use Crone Tab to set up automatic script execution. Cron job are used to schedule commands to be executed periodically. You can set up commands or scripts, which will repeatedly run at a set time^[5].

- 1. To edit your crontab file use command -> crontab -e
- 2. Append the script to be run along with arguments in the following format:

```
* * * * * command to be executed
- - - - -
| | | | |
| | | ----- Day of week (0 - 7) (Sunday=0 or 7)
| | ------ Month (1 - 12)
| | ------ Day of month (1 - 31)
| ------ Hour (0 - 23)
------ Minute (0 - 59)
```

Example:

0 3 * * * /root/backup.sh

6. Processing and Generating Report

Thus far, we have deployed scripts to collect information from the arrays. We have set up task schedulers to automatically run these scripts. The scripts collect information from the arrays and upload them to a central location. Once all the information needed is in a central location, the next step is to process this data and generate meaningful reports. This can be accomplished using various scripting techniques. The objective is to parse through the output of commands gathered and process it to generate reports. Since the final reports are best viewable in an Excel spreadsheet, we propose a method utilizing Excel VBA (Visual Basic for Applications) to process and present the data.

VBA enables building user defined functions (UDFs), automating processes and accessing Windows API and other low-level functionality through dynamic-link libraries (DLLs)^[6]. With its seamless integration with Microsoft Excel, VBA provides a good platform for data analysis and presentation. A completely developed Excel spreadsheet with the VBA code can be found at EMC One - <u>http://one.emc.com/clearspace/docs/DOC-89591</u>. The sheet is explained in this section.

6.1 VBA Function to read information from Outlook Emails

Below is the code snippet of a function used to read the latest email containing a particular string in the subject line from Outlook:

```
Public Function get_latest_outlookmail(subject_line) As String
```

```
Dim olApp As Outlook.Application
 Dim objNS As Outlook.Namespace
 Set olApp = Outlook.Application
 Set objNS = olApp.GetNamespace("MAPI")
 Set myINBOXFolder = objNS.GetDefaultFolder(olFolderInbox)
 If Worksheets("settings").Cells(2, 2) = "Inbox" Then
        Set myOlItems = myINBOXFolder.Items
 Else
        t = Worksheets("settings").Cells(2, 2)
        Set myNewFolder = myINBOXFolder.Folders(t)
         Set myOlItems = myNewFolder.Items
 End If
 Set myItem = myOlItems(1)
 Dim latest date As Date
For Each mail In myOlItems
    If mail.Subject = subject_line Then
```

End Function

6.2 VBA Function to read data from File

VBA also has the ability to read data directly from the files.

```
Function read_file(filename) As String
    Open filename For Input As #1
    WholeFile = Input$(LOF(1), #1)
    Close #1
    read_file = WholeFile
```

End Function

6.3 VBA Function to analyze Symmetrix Data

Once the data is read from the sources, it is analyzed by VBA and updated in the spreadsheet reports. A code snippet on data processing is shown below:

```
Public Function process_disk_section(section, array_id)
    disk_details = ""
    disk details section = False
        For Each Line In Split(section, vbLf)
            Line = Replace(Line, vbCr, "")
                If disk_details_section = True And Line <> "" And Line <> " " Then
                    disk details = disk details & vbLf & "DISK: " & Line
                End If
        Next Line
        If disk details <> "" Then
        updateErrorNotes Worksheets("VMAX-DMX").Cells(array_id.Row, 5), disk_details
            If Worksheets("VMAX-DMX").Cells(array_id.Row, 4) = "OK" Then
                        Worksheets("VMAX-DMX").Cells(array_id.Row, 4) = "DEGRADED"
                        markRed Worksheets("VMAX-DMX").Cells(array_id.Row, 5)
            End If
        End If
End Function
```

6.4 Symmetrix Health Check Report

The Symmetrix Health Check report displays the basic health status of the array, and notes indicating the fault on it. Below is a sample Symmetrix Health Check report.

Management Serv	Array Name	Serial Number	Status	Notes
GSUN628	GROSYM009	0001 300	ОК	
GSUN628	GROT1SAN011	0001 388	ОК	
GSUN628	GROSAN300	0001 920	ОК	
AMRNDHS041	NDHT1SAN001	0001 563	DEGRADED	ENVIRONMENT: SystemBay:All Standby Power Supplies : Failed (1)
				DIR: RF-3C 03C 35 3 RDF-BI-DIR Offline
	NDHT1SAN002		DEGRADED	DIR: RF-3D 03D 51 3 RDF-BI-DIR Offline
AMRNDHS041		0001 371		DIR: RF-14D 14D 62 14 RDF-BI-DIR Offline
				DIR: RF-3C 03C 35 3 RDF-BI-DIR Offline
	NDHT1SAN003		DEGRADED	DIR: RF-3D 03D 51 3 RDF-BI-DIR Offline
AMRNDHS041		0001 382		DIR: RF-14D 14D 62 14 RDF-BI-DIR Offline
AMRNDHS041	NDHT1SAN004	0001 553	DEGRADED	DISK: DF-1D 01D C 9 SEAGATE T300155 0 0 0 286102
AMRNDHS041	NDHSAN300	0001 121	DEGRADED	DIR: DF-6A 06A 6 6 DISK Dead
AMRNDHS041	NDHSAN301	0001 552	ОК	
AMRNDHS041	NDHSAN303	0001 509	DEGRADED	DISK: DF-7A 07A C 4 SEAGATE EGC4515 0 0 0 418710
AMRNDHS041	NDHSAN304	0001 520	ОК	
AMRNDHS041	NDHSAN302	0001 564	ОК	
amrndhw2278	NDHSAN307	0001 038	ОК	

Figure 29: Screenshot – Report Symmetrix Health Check

6.5 Symmetrix Capacity Report

Similarly, Symmetrix Capacity report displays total capacity and storage group-wise capacity.

VMax name	Serial number	Total capacity	Used capacity (Gb)	% used		
SC9-VMAX2875	19: '5	684204	681605	<mark>99.</mark> 6		
Disk Groups						
Disk group name	Туре	% used	Capacity (GB)	Free (GB)		
DISK_GROUP_001	FC	99	499399 . 8	2507.31		
DISK_GROUP_002	SATA	99	149042.19	91.76		
DISK_GROUP_003	EFD	100	17881.41	0.19		
DISK_GROUP_004	EFD	100	17881.41	0.19		
Thin Pools						
Thin Pool Name	Enabled Capacit	Current Alloca	% Allocated	Free (GB)	Max subscription	% subscribed
EFD_2875	30809.8	23768.59	77	7041.26	100%	80
FC_2875	365335.6	77429.63	21	287905.44	0%	33
SATA_2875	109861.92	85061.63	77	24800.30	0%	117

Figure 30: Screenshot – Symmetrix Capacity Reporting

6.6 Symmetrix Capacity report per Storage Group

The sheet also provides a Symmetrix Capacity report on a per storage group basis.

Storage Group	Total Avaialble GB
ALP_DST_APP_PROD_ESX_4-0_CLUS1_SG	13126.34
ALP_DST_APP_UAT_ESX_4-0_CLUS1_SG	2187.72
ALP_DST_APP_UAT_ESX_4-0_CLUS1_SG	2734.65
ALP_DST_APP_UAT_ESX_4-0_CLUS1_SG	2461.19
ALP_DST_DB_PROD_ESX_4-0_CLUS1_SG	1914.25
ALP_DST_DB_UAT_ESX_4-0_CLUS1_SG	1914.25
ALP_DST_DB_UAT_ESX_4-0_CLUS1_SG	1093.86
ALP_DST_DB_UAT_ESX_4-0_CLUS1_SG	1093.86
ALP_PROD_ESX_4-0_CLUS1_SG	820.39
ALP_PROD_BIZTALK_ESX_4-0_CLUS1_SG	820.39
ALP_PROD_BIZTALK_ESX_4-0_CLUS1_SG	820.39
ALP_PROD_BIZTALK_ESX_4-0_CLUS1_SG	820.39
ALP_PROD_CTX_ESX_4-0_CLUS1_SG	1367.32
ALP_PROD_CTX_ESX_4-0_CLUS2_SG	15040.6
ALP_PROD_FN_ESX_4-0_CLUS1_SG	5469.31
ALP_PROD_FN_ESX_4-0_CLUS1_SG	1914.25
ALP_PROD_ORACLE_DB_4-0_CLUS1_SG	1914.25

Figure 31: S	ymmetrix Capaci	ty Report per	Storage Group
--------------	-----------------	---------------	---------------

6.7 VNX Health Check Report

The VNX Health Check report provides a list of VNX arrays and their general health status. If any array is degraded, detailed information on the error is given.

Manage	ment Server A	Array Na	ame Seri	Status	Notes	Incident Number	Incident Ov
10	225	AN	N001	ОК			
10	1.13	AS	001	ОК			
10	3.4	AS	002	ОК			
bjĘ	1spa	BJC	001	DEGRADED	++ERR-:Perf Manual Check		
ch)2spa	CH	1002	ОК			
fre	1a.de.pfizer.com	FRI	001	DEGRADED	System Fault LED: ON; Disk Failed	GRO20041088i	gantav
fre	2a.de.pfizer.com	FRI	002	ОК	Faulted S	ubsystem: GROT2SAN	1009
gro	ра	GR)1	ОК			
gro)2spa	GR	1002	ОК	Bus 3 En	closure 1 : Faulted	wood
gro)8spa	GR	1008	OK	Bus 5 Li		iveu
gro)9spa	GR	1009	DEGRADED	System Fault LED: ON	GRO20022057i	Vummak
ich	1a	ICF	001	ОК		JPN20057589i	JAINA76
icł	2a	ICF	002	ОК			

Figure 32:	Screenshot -	VNX Health	Check Re	port

6.8 VNX Capacity Report

The VNX Capacity Report provides detailed information regarding the overall capacity utilization. Capacity utilization per host as well as raw capacity information is displayed.

WDC-VNX7500-0889					
Server Name (Masking View)	Size (GB)				
VPLEX_0150	208776				
wdc-dr-prod-vmg2-3	36936				
wdc-dr-prod-vmg3-4	114912				
wdc-dr-prod-vmg5-1	2052				
wdc-dr-prod-vmg5-2	2052				
wdc-dr-prod-vmg5-3	30780				
wdc-dr-prod-vmg5-4	2052				
wdc-dr-prod-vmg6-2	16416				
wdc-drsp-prod-vmg1,	16384				
wdc-dr-srm1,	24612				
WDC-RPA2-DR	10106				
WDC-RPA3-DR	2249				
WDC-RPA4-DR	6858				
Logical Capacity Summ	nary				
Total Lun Capacity	6,505.84				
Total Allocated LUN Capacity	873				
Total UnAllocated LUN Capacity	632.84				
Raw Disk Space	68729				

WDC-VNX7500-0889							
Server Name (Masking View)	Size (GB)						
wdc-dr-prod-vmg6-2	16416						
wdc-dr-srm1	28708						
wdc-dr-prod-vmg3-2	114912						
wdc-drsp-prod-vmg1	16384						
wdc-dr-prod-vmg2-1	36936						
wdc-dr-prod-vmg2-3	36936						
WDC-RPA4-DR	68386						
WDC-RPA2-DR	190662						
wdc-dr-prod-vmg5-1	30780						
wdc-dr-prod-vmg3-4	114912						
wdc-dr-prod-vmg3-5	114912						
Logical Capacity Sumn	nary						
Total Lun Capacity	506,505.84						
Total Allocated LUN Capacity	470,873						
Total UnAllocated LUN Capacity	35,632.84						
Raw Disk Space	588729						

Figure 33: Screenshot – VNX Capacity Report

6.9 XIV Health Check Report

The XIV Sheet provides XIV Health Check Report and detailed information on the failure on the array.

Array	Name	Status	Notes	Incident Number	Incid
Ν	1100	ОК			
Ν	J101	ОК			
Ν	J102	OK			
Ν	1103	OK		"1 Dick: 5:2" "Epiled"	" "no"
Ν	J104	DEGRADED	Health Checks FAILED	1.DISK.3.3, Talleu	, 110
SC	V100	ОК		Ĩ	
SC	V101	OK			[
SL	1100	ОК			
Ν	:01	OK			
SC	201	OK			

Figure	34:	Screenshot -	XIV	Health	Check	Report

6.10 Switch Health Check Report

The Switch sheet displays health check report on the switches. Details regarding the errors are also displayed.

Switch Name	Serial Number	Status	Notes	Incident Number
Brocade_Switch1	XYZ10245	ОК		
Brocade_Switch2	XYZ10246	OK		
Cisco_Switch1	XYZ10247	DEGRADED	SFP Failure	
Cisco_Switch2	XYZ10248	DEGRADED	Port Down, High Error Count on Port fc1/2	
Cisco_Switch3	XYZ10249	ОК		
Cisco_Switch4	XYZ10250	ОК		

Figure 35: Screenshot – Switch Health Check

6.11 Switch Capacity Report

The Switch capacity page displays capacity information about the switches.

Switch Name 💌	Total Port -	st Allocated 🝷	Max Poi 🔻	Use 💌	Vendo 🔻	Model 🔻
Grl-bcd-01	32	15	32	Shared Backup	Brocade	5000
Grl-bcd-02	32	15	32	Shared Backup	Brocade	5000
Msl-mcd-13	32	31	32	Shared Backup	Mcdata	Sphereon 4700
Msl-mcd-14	32	31	32	Shared Backup	Mcdata	Sphereon 4700
Prl-mcd-03	24	18	32	Shared Backup		
Prl-mcd-04	24	18	32	Shared Backup		
Swi-csc-01	40	36	48	Shared Backup	cisco	Cisco MDS 9148
Swi-csc-02	40	37	48	Shared Backup	cisco	Cisco MDS 9148
Wat-mcd-09	32	27	32	Shared Backup	Mcdata	DS-4700M
Wat-mcd-10	32	28	32	Shared Backup	Mcdata	DS-4700M
Grl-dir-01	40	10	144	Shared SAN	Mcdata	ED-140M
Grl-dir-02	40	14	144	Shared SAN	Mcdata	ED-140M
Grl-mcd-01	24	5	24	Shared SAN	Mcdata	DS-24M2
Grl-mcd-02	24	6	24	Shared SAN	Mcdata	DS-24M2
Grl-mcd-03	24	10	24	Shared SAN	Mcdata	DS-24M2

6.12 Consolidated Health Check Report Graph of SAN Environment

The dashboard also displays a consolidated graph of all the arrays and their general health status.

Figure 37: Screenshot – Dash Board – Consolidated Graph

7. Advantages

The tools and techniques described in the previous few sections help us to perform health check and capacity reporting for any number of arrays from any vendor, in an easy, fast manner.

- This procedure can be used to perform reporting on any array from any vendor.
 By inserting modules for each array we are able to integrate any type of array into the Excel Reporting tool.
- Risk of missing information due to human error when done manually can be eliminated.
- It took multiple engineers to log on to 100s of management stations each time to collect information from the arrays. Now, with the tasks scheduled to run automatically, array information is automatically collated in a central location.
- Administrators no longer need to go through the output of each command and analyze the health of the array; instead Excel VBA performs this task and updates the spreadsheet.
- Time savings for such a solution is significant. Table 1 Time Savings with Automation shows the time saved with this approach in a large account with storage arrays from multiple vendors. As shown, up to 64 hours' worth of human effort can be saved with the entire process for reporting on a large data center with 263 components.

Array Type	Time / Array	Total	Total Time	Automation
		Arrays		
Symmetrix	15 Minutes	22	330 Minutes	5 Minutes
CLARiiON/VNX	20 Minutes	69	1380 Minutes	5 Minutes
XIV	15 Minutes	10	150 Minutes	5 Minutes
Switch	10 Minutes	124	1240 Minutes	5 Minutes
HP EVA	20 Minutes	38	760 Minutes	5 Minutes
Total	100 Minutes	263	3860 Minutes	30 Minutes
	(~1.6 Hours)		(~64 Hours)	

Table	1:	Time	Savings	with	Automation
-------	----	------	---------	------	------------

To generate a consolidated report that can be presented to top management would require multiple administrators working in parallel for a couple of days to perform health checks and capacity reporting on all the components of the SAN infrastructure. However, with automation implemented, most of these tasks wouldn't even require human intervention. The reports automatically arrive at the administrator's email ID or are accumulated in a common place. Once the reports arrive, it is only a matter of seconds for Excel to combine it.

8. Conclusions

This article discussed new techniques that may be implemented in various stages of health check and capacity reporting for a variety of arrays in a SAN environment. Health check routines for multiple arrays were discussed in detail and scripts are deployed to automate these tasks. The tools and scripts deployed help in automatically collating information from the arrays and generating reports without human intervention. These were deployed in various projects in EMC Managed Services and resulted in significant time savings. In a large account consisting of approximately 250 components in a SAN network, this procedure resulted in a time saving of up to 64 hours. Reporting is now an easy and automated task requiring almost zero human effort. Additional modules may be added to the VBA solution to include support for other multi-vendor arrays and SAN components not discussed in this article.

9. Appendix

Cisco Status Check Script http://one.emc.com/clearspace/docs/DOC-89592

Symmetrix Grabber Script http://one.emc.com/clearspace/docs/DOC-89586

Excel VBA Solution for consolidated reporting http://one.emc.com/clearspace/docs/DOC-89591

10. References

- [1] VNX for Block Command Line Interface Reference -1.0
- [2] Hitachi Command Suite Software CLI Reference Guide available at [http://www.hds.com/assets/pdf/hitachi-command-suite-software-cli-reference-guide.pdf]
- [3] Overview of the IBM XIV Storage System Command-line interface
- [4] HP StorageWorks Command View XP Command Line Interface (CLI) reference available at <u>http://h20564.www2.hp.com/portal/site/hpsc/template.PUBLIC_SP4TS_REDIRECTOR/b</u> <u>c/docs/support/SupportManual/c00595566/c00595566.pdf</u>]
- [5] HowTo: Add Jobs To cron Under Linux or UNIX? <u>http://www.cyberciti.biz/faq/how-do-i-add-jobs-to-cron-under-linux-or-unix-oses/</u>
- [6] Visual Basic for Applications http://en.wikipedia.org/wiki/Visual_Basic_for_Applications

11. Bibliography

- 1. Unisphere for VNX User Guide
- 2. EMC SPEED Guru community
- 3. VNX for Block Command Line Interface Reference -1.0
- 4. Hitachi Command Suite Software CLI Reference Guide
- 5. Fabric OS Command Reference Manual v7.0
- 6. PowerShell Pro!, <u>www.PowerShellPro.com</u>, Jesse Hamrick
- 7. PSFTP Module for PowerShell, MichalGajda, <u>http://gallery.technet.microsoft.com/scriptcenter/PowerShell-FTP-Client-db6fe0cb</u>
- Microsoft Excel VBA Programming for the absolute Beginners, Duane Birnbaum, Andy Harris, 2002

EMC believes the information in this publication is accurate as of its publication date. The information is subject to change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED "AS IS." EMC CORPORATION MAKES NO RESPRESENTATIONS OR WARRANTIES OF ANY KIND WITH RESPECT TO THE INFORMATION IN THIS PUBLICATION, AND SPECIFICALLY DISCLAIMS IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Use, copying, and distribution of any EMC software described in this publication requires an applicable software license.